这篇文章将为大家详细讲解有关Flink怎么用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
邵武ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:13518219792(备注:SSL证书合作)期待与您的合作!
Flink运行支持 Linux、苹果、Windows 主流平台。不过最好还是使用 Linux。下面给出安装前的准备:
安装 Jdk1.7.X 或者以上的版本
在 Flink 官网下载对应 Hadoop 预编译版本
将预编译版本解压,进入解压缩文件,为了方便,后文统一称此目录为:FLINK_HOME。
单机尝试非常简单,直接执行命令:
Linux用户: sh bin/start-local.sh
Windows用户,在命令窗户输入:bin\start-local.bat
等待其出现如下提示之后:
D:\Java\flink\flink-0.10.1>bin\start-local.bat Starting Flink job manager. Webinterface by default on http://localhost:8081/. Don't close this batch window. Stop job manager by pressing Ctrl+C.
在浏览器中输入:http://localhost:8081/,Flink默认监听8081端口,防止其他进程占用此端口。此时出现下面的管理界面:
可以发现这个界面和 Spark 的管理界面的逻辑差不多,主要是管理正在运行的Job,已经完成的 Job,以及Task 管理和 Job 管理,Task 应该是管理 Job 的,以后再仔细分析里面的逻辑。
下面迫不及待先来跑一个分布式系统最经典的例子:WordCount,下面以 FLINK_HOME 的 README.txt 文件作为示例文件,测试 WordCount 程序,在 Windows 上面运行代码以及运行过程如下图:
D:\Java\flink\flink-0.10.1>bin\flink.bat run .\examples\WordCount.jar file:/D:/Java/flink/flink-0.10.1/README.txt file:/D:/Java/flink/flink-0.10.1/wordcount-result.txt log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.li b.MutableMetricsFactory). log4j:WARN Please initialize the log4j system properly. log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info. 01/15/2016 16:30:51 Job execution switched to status RUNNING. 01/15/2016 16:30:51 CHAIN DataSource (at getTextDataSet(WordCount.java:142) (org.apache.flink.api.java.io.TextInputFormat)) -> FlatMap (FlatMap at main(WordCount.java:69)) -> Combine(SUM(1), at main(WordCount.java:72)(1/1) switched to SCHEDULED 01/15/2016 16:30:51 CHAIN DataSource (at getTextDataSet(WordCount.java:142) (org.apache.flink.api.java.io.TextInputFormat)) -> FlatMap (FlatMap at main(WordCount.java:69)) -> Combine(SUM(1), at main(WordCount.java:72)(1/1) switched to DEPLOYING 01/15/2016 16:30:52 CHAIN DataSource (at getTextDataSet(WordCount.java:142) (org.apache.flink.api.java.io.TextInputFormat)) -> FlatMap (FlatMap at main(WordCount.java:69)) -> Combine(SUM(1), at main(WordCount.java:72)(1/1) switched to RUNNING 01/15/2016 16:30:52 Reduce (SUM(1), at main(WordCount.java:72)(1/1) switched to SCHEDULED 01/15/2016 16:30:52 Reduce (SUM(1), at main(WordCount.java:72)(1/1) switched to DEPLOYING 01/15/2016 16:30:52 CHAIN DataSource (at getTextDataSet(WordCount.java:142) (org.apache.flink.api.java.io.TextInputFormat)) -> FlatMap (FlatMap at main(WordCount.java:69)) -> Combine(SUM(1), at main(WordCount.java:72)(1/1) switched to FINISHED 01/15/2016 16:30:52 Reduce (SUM(1), at main(WordCount.java:72)(1/1) switched to RUNNING 01/15/2016 16:30:53 DataSink (CsvOutputFormat (path: file:/D:/Java/flink/flink-0.10.1/wordcount-result.txt, delimiter: ))(1/1) switched to SCHEDULED 01/15/2016 16:30:53 DataSink (CsvOutputFormat (path: file:/D:/Java/flink/flink-0.10.1/wordcount-result.txt, delimiter: ))(1/1) switched to DEPLOYING 01/15/2016 16:30:53 Reduce (SUM(1), at main(WordCount.java:72)(1/1) switched to FINISHED 01/15/2016 16:30:53 DataSink (CsvOutputFormat (path: file:/D:/Java/flink/flink-0.10.1/wordcount-result.txt, delimiter: ))(1/1) switched to RUNNING 01/15/2016 16:30:53 DataSink (CsvOutputFormat (path: file:/D:/Java/flink/flink-0.10.1/wordcount-result.txt, delimiter: ))(1/1) switched to FINISHED 01/15/2016 16:30:53 Job execution switched to status FINISHED.
可以看到输出日志非常详细,很方便就清楚整个运行流程,得到输出文件 wordcount-result.txt 前面10条内容如下 :
1 1 13 1 5d002 1 740 1 about 1 account 1 administration 1 algorithms 1 and 7 another 1 any 2
关于“Flink怎么用”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。