这篇文章主要讲解了“基于概率神经网络PNN的变压器故障实例分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“基于概率神经网络PNN的变压器故障实例分析”吧!
创新互联建站是专业的通许网站建设公司,通许接单;提供成都网站设计、网站制作、外贸营销网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行通许网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
%% 清空环境变量
clc;
clear
close all
nntwarn off;
warning off;
%% 数据载入
load data
%% 选取训练数据和测试数据
Train=data(1:23,:);
Test=data(24:end,:);
p_train=Train(:,1:3)';
t_train=Train(:,4)';
p_test=Test(:,1:3)';
t_test=Test(:,4)';
%% 将期望类别转换为向量
t_train=ind2vec(t_train);
t_train_temp=Train(:,4)';
%% 使用newpnn函数建立PNN SPREAD选取为1.5
Spread=1.5;
net=newpnn(p_train,t_train,Spread);
%% 训练数据回代 查看网络的分类效果
% Sim函数进行网络预测
Y=sim(net,p_train);
% 将网络输出向量转换为指针
Yc=vec2ind(Y);
%% 通过作图 观察网络对训练数据分类效果
figure(1)
subplot(1,2,1)
stem(1:length(Yc),Yc,'bo')
hold on
stem(1:length(Yc),t_train_temp,'r*')
title('PNN 网络训练后的效果')
xlabel('样本编号')
ylabel('分类结果')
set(gca,'Ytick',1:5)
subplot(1,2,2)
H=Yc-t_train_temp;
stem(H)
title('PNN 网络训练后的误差图')
xlabel('样本编号')
%% 网络预测未知数据效果
Y2=sim(net,p_test);
Y2c=vec2ind(Y2);
figure(2)
stem(1:length(Y2c),Y2c,'b^')
hold on
stem(1:length(Y2c),t_test,'r*')
title('PNN 网络的预测效果')
xlabel('预测样本编号')
ylabel('分类结果')
set(gca,'Ytick',1:5)
感谢各位的阅读,以上就是“基于概率神经网络PNN的变压器故障实例分析”的内容了,经过本文的学习后,相信大家对基于概率神经网络PNN的变压器故障实例分析这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!