成都网站建设设计

将想法与焦点和您一起共享

sparksql如何调优

这篇文章将为大家详细讲解有关sparksql如何调优,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

创新互联IDC提供业务:眉山服务器托管,成都服务器租用,眉山服务器托管,重庆服务器租用等四川省内主机托管与主机租用业务;数据中心含:双线机房,BGP机房,电信机房,移动机房,联通机房。

1,jvm调优

这个是扯不断,理还乱。建议能加内存就加内存,没事调啥JVM,你都不了解JVM和你的任务数据。

spark调优系列之内存和GC调优

2,内存调优

缓存表

spark2.+采用:

spark.catalog.cacheTable("tableName")缓存表,spark.catalog.uncacheTable("tableName")解除缓存。

spark 1.+采用:

采用 sqlContext.cacheTable("tableName")缓存,sqlContext.uncacheTable("tableName") 解除缓存

Sparksql仅仅会缓存必要的列,并且自动调整压缩算法来减少内存和GC压力。

属性

默认值

介绍

spark.sql.inMemoryColumnarStorage.compressed

true

假如设置为true,SparkSql会根据统计信息自动的为每个列选择压缩方式进行压缩。

spark.sql.inMemoryColumnarStorage.batchSize

10000

控制列缓存的批量大小。批次大有助于改善内存使用和压缩,但是缓存数据会有OOM的风险

3,广播

大小表进行join时,广播小表到所有的Worker节点,来提升性能是一个不错的选择。Spark提供了两个参数可以调整,不同版本会有些许不一样,本文以Spark2.2.1为例讲解。

属性

默认值

描述

spark.sql.broadcastTimeout

300

广播等待超时时间,单位秒

spark.sql.autoBroadcastJoinThreshold

10485760 (10 MB)

最大广播表的大小。设置为-1可以禁止该功能。当前统计信息仅支持Hive Metastore表

广播的变量的使用其实,有时候没啥用处。在任务超多,夸stage使用数据的时候才能凸显其真正作用。任务一趟跑完了,其实广播不广播无所谓了。。。

4,分区数据的调控

分区设置spark.sql.shuffle.partitions,默认是200.

对于有些公司来说,估计在用的时候会有Spark sql处理的数据比较少,然后资源也比较少,这时候这个shuffle分区数200就太大了,应该适当调小,来提升性能。

也有一些公司,估计在处理离线数据,数据量特别大,而且资源足,这时候shuffle分区数200,明显不够了,要适当调大。

适当,就完全靠经验。

5,文件与分区

这个总共有两个参数可以调整:

一个是在读取文件的时候一个分区接受多少数据;

另一个是文件打开的开销,通俗理解就是小文件合并的阈值。

文件打开是有开销的,开销的衡量,Spark 采用了一个比较好的方式就是打开文件的开销用,相同时间能扫描的数据的字节数来衡量。

参数介绍如下:

属性名称

默认值

介绍

spark.sql.files.maxPartitionBytes

134217728 (128 MB)

打包传入一个分区的最大字节,在读取文件的时候。

spark.sql.files.openCostInBytes

4194304 (4 MB)

用相同时间内可以扫描的数据的大小来衡量打开一个文件的开销。当将多个文件写入同一个分区的时候该参数有用。该值设置大一点有好处,有小文件的分区会比大文件分区处理速度更快(优先调度)。

spark.sql.files.maxPartitionBytes该值的调整要结合你想要的并发度及内存的大小来进行。

spark.sql.files.openCostInBytes说直白一些这个参数就是合并小文件的阈值,小于这个阈值的文件将会合并。

6,文件格式

建议parquet或者orc。Parquet已经可以达到很大的性能了。

关于“sparksql如何调优”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。


当前题目:sparksql如何调优
转载源于:http://chengdu.cdxwcx.cn/article/phojjo.html