成都网站建设设计

将想法与焦点和您一起共享

python计算高斯函数的简单介绍

怎么用python计算高斯定律

1

平顶山ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联建站的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18980820575(备注:SSL证书合作)期待与您的合作!

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

# -*- coding: utf-8 -*-

"""

Created on Tue Mar 08 16:16:36 2016

@author: SumaiWong

"""

import numpy as np

import pandas as pd

from numpy import dot

from numpy.linalg import inv

iris = pd.read_csv('D:\iris.csv')

dummy = pd.get_dummies(iris['Species']) # 对Species生成哑变量

iris = pd.concat([iris, dummy], axis =1 )

iris = iris.iloc[0:100, :] # 截取前一百行样本

X = iris.ix[:, 0:4]

Y = iris['setosa'].reshape(len(iris), 1) #整理出X矩阵 和 Y矩阵

def GDA(Y, X):

theta1 = Y.mean() #类别1的比例

theta0 = 1-Y.mean() #类别2的比例

mu1 = X[Y==1].mean() #类别1特征的均值向量

mu0 = X[Y==0].mean() #类别2特征的均值向量

X_1 = X[Y==1]

X_0 = X[Y==0]

A = dot(X_1.T, X_1) - len(Y[Y==1])*dot(mu1.reshape(4,1), mu1.reshape(4,1).T)

B = dot(X_0.T, X_0) - len(Y[Y==0])*dot(mu0.reshape(4,1), mu0.reshape(4,1).T)

sigma = (A+B)/len(X) #sigma = X'X-n(X.bar)X.bar'=X'[I-1/n 1 1]X

return theta1, theta0, mu1, mu0, sigma

怎么用python表示出二维高斯分布函数,mu表示均值,sigma表示协方差矩阵,x表示数据点

clear 

close all

%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集

rand('state',0)

sigma_matrix1=eye(2);

sigma_matrix2=50*eye(2);

u1=[0,0];

u2=[30,30];

m1=100;

m2=300;%样本数

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集

Y1=multivrandn(u1,m1,sigma_matrix1);

Y2=multivrandn(u2,m2,sigma_matrix2);

scatter(Y1(:,1),Y1(:,2),'bo')

hold on

scatter(Y2(:,1),Y2(:,2),'r*')

title('SM1数据集')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集

u11=[0,0];

u22=[5,5];

u33=[10,10];

u44=[15,15];

m=600;

sigma_matrix3=2*eye(2);

Y11=multivrandn(u11,m,sigma_matrix3);

Y22=multivrandn(u22,m,sigma_matrix3);

Y33=multivrandn(u33,m,sigma_matrix3);

Y44=multivrandn(u44,m,sigma_matrix3);

figure(2)

scatter(Y11(:,1),Y11(:,2),'bo')

hold on

scatter(Y22(:,1),Y22(:,2),'r*')

scatter(Y33(:,1),Y33(:,2),'go')

scatter(Y44(:,1),Y44(:,2),'c*')

title('SM2数据集')

end

function Y = multivrandn(u,m,sigma_matrix)

%%生成指定均值和协方差矩阵的高斯数据

n=length(u);

c = chol(sigma_matrix);

X=randn(m,n);

Y=X*c+ones(m,1)*u;

end

2021-02-08 Python OpenCV GaussianBlur()函数

borderType= None)函数

此函数利用高斯滤波器平滑一张图像。该函数将源图像与指定的高斯核进行卷积。

src:输入图像

ksize:(核的宽度,核的高度),输入高斯核的尺寸,核的宽高都必须是正奇数。否则,将会从参数sigma中计算得到。

dst:输出图像,尺寸与输入图像一致。

sigmaX:高斯核在X方向上的标准差。

sigmaY:高斯核在Y方向上的标准差。默认为None,如果sigmaY=0,则它将被设置为与sigmaX相等的值。如果这两者都为0,则它们的值会从ksize中计算得到。计算公式为:

borderType:像素外推法,默认为None(参考官方文档 BorderTypes

)

在图像处理中,高斯滤波主要有两种方式:

1.窗口滑动卷积

2.傅里叶变换

在此主要利用窗口滑动卷积。其中二维高斯函数公式为:

根据上述公式,生成一个3x3的高斯核,其中最重要的参数就是标准差 ,标准差 越大,核中心的值与周围的值差距越小,曲线越平滑。标准差 越小,核中心的值与周围的值差距越大,曲线越陡峭。

从图像的角度来说,高斯核的标准差 越大,平滑效果越不明显。高斯核的标准差 越小,平滑效果越明显。

可见,标准差 越大,图像平滑程度越大

参考博客1:关于GaussianBlur函数

参考博客2:关于高斯核运算


本文标题:python计算高斯函数的简单介绍
URL地址:http://chengdu.cdxwcx.cn/article/phdpoi.html