成都网站建设设计

将想法与焦点和您一起共享

Tensorflow中Summary如何使用

这篇文章将为大家详细讲解有关Tensorflow中Summary如何使用,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

成都创新互联是一家集网站建设,友好企业网站建设,友好品牌网站建设,网站定制,友好网站建设报价,网络营销,网络优化,友好网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

1、tf.summary.scalar

用来显示标量信息,其格式为:

tf.summary.scalar(tags, values, collections=None, name=None)

例如:tf.summary.scalar('mean', mean)

一般在画loss,accuary时会用到这个函数。

2、tf.summary.histogram

用来显示直方图信息,其格式为:

tf.summary.histogram(tags, values, collections=None, name=None)

例如: tf.summary.histogram('histogram', var)

一般用来显示训练过程中变量的分布情况

3、tf.summary.distribution

分布图,一般用于显示weights分布

4、tf.summary.text

可以将文本类型的数据转换为tensor写入summary中:

例如:

text = """/a/b/c\\_d/f\\_g\\_h\\_2017"""
summary_op0 = tf.summary.text('text', tf.convert_to_tensor(text))

5、tf.summary.image

输出带图像的probuf,汇总数据的图像的的形式如下: ' tag /image/0', ' tag /image/1'...,如:input/image/0等。

格式:tf.summary.image(tag, tensor, max_images=3, collections=None, name=Non

6、tf.summary.audio

展示训练过程中记录的音频 

7、tf.summary.merge_all

merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。如果没有特殊要求,一般用这一句就可一显示训练时的各种信息了。

格式:tf.summaries.merge_all(key='summaries')

8、tf.summary.FileWriter

指定一个文件用来保存图。

格式:tf.summary.FileWritter(path,sess.graph)

可以调用其add_summary()方法将训练过程数据保存在filewriter指定的文件中

Tensorflow Summary 用法示例:

tf.summary.scalar('accuracy',acc)                   #生成准确率标量图  
merge_summary = tf.summary.merge_all()  
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址  
......(交叉熵、优化器等定义)  
for step in xrange(training_step):                  #训练循环  
    train_summary = sess.run(merge_summary,feed_dict =  {...})#调用sess.run运行图,生成一步的训练过程数据  
    train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存

此时开启tensorborad:

  1. tensorboard --logdir=/summary_dir 

便能看见accuracy曲线了。

另外,如果我不想保存所有定义的summary信息,也可以用tf.summary.merge方法有选择性地保存信息:

9、tf.summary.merge

格式:tf.summary.merge(inputs, collections=None, name=None)

一般选择要保存的信息还需要用到tf.get_collection()函数

示例:

tf.summary.scalar('accuracy',acc)                   #生成准确率标量图  
merge_summary = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),...(其他要显示的信息)])  
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址  
......(交叉熵、优化器等定义)  
for step in xrange(training_step):                  #训练循环  
    train_summary = sess.run(merge_summary,feed_dict =  {...})#调用sess.run运行图,生成一步的训练过程数据  
    train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存

使用tf.get_collection函数筛选图中summary信息中的accuracy信息,这里的

tf.GraphKeys.SUMMARIES  是summary在collection中的标志。

当然,也可以直接:

acc_summary = tf.summary.scalar('accuracy',acc)                   #生成准确率标量图  
merge_summary = tf.summary.merge([acc_summary ,...(其他要显示的信息)])  #这里的[]不可省

关于Tensorflow中Summary如何使用就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。


网站栏目:Tensorflow中Summary如何使用
网页路径:http://chengdu.cdxwcx.cn/article/peoidg.html