成都网站建设设计

将想法与焦点和您一起共享

如何排查线上CPU飙高的问题

这篇文章给大家分享的是有关如何排查线上CPU飙高的问题的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

我们提供的服务有:网站建设、网站制作、微信公众号开发、网站优化、网站认证、龙州ssl等。为成百上千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的龙州网站制作公司

前段时间我们新上了一个新的应用,因为流量一直不大,集群QPS大概只有5左右,写接口的rt在30ms左右。

因为最近接入了新的业务,业务方给出的数据是日常QPS可以达到2000,大促峰值QPS可能会达到1万。

所以,为了评估水位,我们进行了一次压测。压测过程中发现,当单机QPS达到200左右时,接口的rt没有明显变化,但是CPU利用率急剧升高,直到被打满。

如何排查线上CPU飙高的问题

压测停止后,CPU利用率立刻降了下来。

于是开始排查是什么导致了CPU的飙高。

问题排查与解决

在压测期间,登录到机器,开始排查问题。

本案例的排查过程使用的阿里开源的Arthas工具进行的,不使用Arthas,使用JDK自带的命令也是可以。

在开始排查之前,可以先看一下CPU的使用情况,最简单的就是使用top命令直接查看

top - 10:32:38 up 11 days, 17:56,  0 users,  load average: 0.84, 0.33, 0.18  Tasks:  23 total,   1 running,  21 sleeping,   0 stopped,   1 zombie  %Cpu(s): 95.5 us,  2.2 sy,  0.0 ni, 76.3 id,  0.0 wa,  0.0 hi,  0.0 si,  6.1 st  KiB Mem :  8388608 total,  4378768 free,  3605932 used,   403908 buff/cache  KiB Swap:        0 total,        0 free,        0 used.  4378768 avail Mem     PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND       3480 admin     20   0 7565624   2.9g   8976 S  241.2 35.8 649:07.23 java       1502 root      20   0  401768  40228   9084 S   1.0  0.5  39:21.65 ilogtail     181964 root      20   0 3756408 104392   8464 S   0.7  1.2   0:39.38 java        496 root      20   0 2344224  14108   4396 S   0.3  0.2  52:22.25 staragentd       1400 admin     20   0 2176952 229156   5940 S   0.3  2.7  31:13.13 java     235514 root      39  19 2204632  15704   6844 S   0.3  0.2  55:34.43 argusagent     236226 root      20   0   55836   9304   6888 S   0.3  0.1  12:01.91 systemd-journ

可以看到,进程ID为3480的Java进程占用的CPU比较高,基本可以断定是应用代码执行过程中消耗了大量CPU,接下来开始排查具体是哪个线程,哪段代码比较耗CPU。

首先,下载Arthas命令:

curl -L http://start.alibaba-inc.com/install.sh | sh

启动

./as.sh

使用Arthas命令"thread -n 3 -i 1000"查看当前"最忙"(耗CPU)的三个线程:

如何排查线上CPU飙高的问题

通过上面的堆栈信息,可以看出,占用CPU资源的线程主要是卡在JDBC底层的TCP套接字读取上。连续执行了很多次,发现很多线程都是卡在这个地方。

通过分析调用链,发现这个地方是我代码中有数据库的insert,并且使用TDDL(阿里内部的分布式数据库中间件)来创建sequence,在sequence的创建过程中需要和数据库有交互。

但是,基于对TDDL的了解,TDDL每次从数据库中查询sequence序列的时候,默认会取出1000条,缓存在本地,只有用完之后才会再从数据库获取下一个1000条序列。

按理说我们的压测QPS只有300左右,不应该这么频繁的何数据库交互才对。但是,经过多次使用Arthas的查看,发现大部分CPU都耗尽在这里。

于是开始排查代码问题。最终发现了一个很傻的问题,那就是我们的sequence创建和使用有问题:

public Long insert(T dataObject) {      if (dataObject.getId() == null) {          Long id = next();          dataObject.setId(id);      }      if (sqlSession.insert(getNamespace() + ".insert", dataObject) > 0) {          return dataObject.getId();      } else {          return null;      }  }  public Sequence sequence() {      return SequenceBuilder.create()          .name(getTableName())          .sequenceDao(sequenceDao)          .build();  }  /**   * 获取下一个主键ID   *   * @return   */  protected Long next() {      try {          return sequence().nextValue();      } catch (SequenceException e) {          throw new RuntimeException(e);      }  }

是因为,我们每次insert语句都重新build了一个新的sequence,这就导致本地缓存就被丢掉了,所以每次都会去数据库中重新拉取1000条,但是只是用了一条,下一次就又重新取了1000条,周而复始。

于是,调整了代码,把Sequence实例的生成改为在应用启动时初始化一次。这样后面在获取sequence的时候,不会每次都和数据库交互,而是先查本地缓存,本地缓存的耗尽了才会再和数据库交互,获取新的sequence。

public abstract class BaseMybatisDAO implements InitializingBean {          @Override          public void afterPropertiesSet() throws Exception {              sequence = SequenceBuilder.create().name(getTableName()).sequenceDao(sequenceDao).build();          }      }

通过实现InitializingBean,并且重写afterPropertiesSet()方法,在这个方法中进行Sequence的初始化。

改完以上代码,提交进行验证。通过监控数据可以看出优化后,数据库的读RT有明显下降:

如何排查线上CPU飙高的问题

sequence的写操作QPS也有明显下降:

如何排查线上CPU飙高的问题

于是我们开始了新的一轮压测,但是发现,CPU的使用率还是很高,压测的QPS还是上不去,于是重新使用Arthas查看线程的情况。

如何排查线上CPU飙高的问题

发现了一个新的比较耗费CPU的线程的堆栈,这里面主要是因为我们用到了一个联调工具,该工具预发布默认开启了TDDL的采集(官方文档中描述为预发布默认不开启TDDL采集,但是实际上会采集)。

这个工具在打印日志过程中会进行脱敏,脱敏框架会调用Google的re2j进行正则表达式的匹配。

因为我的操作中TDDL操作比较多,默认采集大量TDDL日志并且进行脱敏处理,确实比较耗费CPU。

所以,通过在预发布中关闭DP对TDDL的采集,即可解决该问题。

感谢各位的阅读!关于“如何排查线上CPU飙高的问题”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!


当前名称:如何排查线上CPU飙高的问题
本文网址:http://chengdu.cdxwcx.cn/article/pdjioj.html