成都网站建设设计

将想法与焦点和您一起共享

Hadoop和Spark的Shuffle过程有什么不同

这篇文章主要讲解了“Hadoop和Spark的Shuffle过程有什么不同”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Hadoop和Spark的Shuffle过程有什么不同”吧!

爱民ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:028-86922220(备注:SSL证书合作)期待与您的合作!

一、前言

对于基于MapReduce编程范式的分布式计算来说,本质上而言,就是在计算数据的交、并、差、聚合、排序等过程。而分布式计算分而治之的思想,让每个节点只计算部分数据,也就是只处理一个分片,那么要想求得某个key对应的全量数据,那就必须把相同key的数据汇集到同一个Reduce任务节点来处理,那么Mapreduce范式定义了一个叫做Shuffle的过程来实现这个效果。

二、编写本文的目的

本文旨在剖析Hadoop和Spark的Shuffle过程,并对比两者Shuffle的差异。

三、Hadoop的Shuffle过程

Shuffle描述的是数据从Map端到Reduce端的过程,大致分为排序(sort)、溢写(spill)、合并(merge)、拉取拷贝(Copy)、合并排序(merge  sort)这几个过程,大体流程如下:

![image](/upload/otherpic61/e4ccedfb6ccaaa0d3c0ad5b3b7ab83d96dd9fed2.png)

上图的Map的输出的文件被分片为红绿蓝三个分片,这个分片的就是根据Key为条件来分片的,分片算法可以自己实现,例如Hash、Range等,最终Reduce任务只拉取对应颜色的数据来进行处理,就实现把相同的Key拉取到相同的Reduce节点处理的功能。下面分开来说Shuffle的的各个过程。

Map端做了下图所示的操作:

1、Map端sort

Map端的输出数据,先写环形缓存区kvbuffer,当环形缓冲区到达一个阀值(可以通过配置文件设置,默认80),便要开始溢写,但溢写之前会有一个sort操作,这个sort操作先把Kvbuffer中的数据按照partition值和key两个关键字来排序,移动的只是索引数据,排序结果是Kvmeta中数据按照partition为单位聚集在一起,同一partition内的按照key有序。

2、spill(溢写)  当排序完成,便开始把数据刷到磁盘,刷磁盘的过程以分区为单位,一个分区写完,写下一个分区,分区内数据有序,最终实际上会多次溢写,然后生成多个文件  3、merge(合并)  spill会生成多个小文件,对于Reduce端拉取数据是相当低效的,那么这时候就有了merge的过程,合并的过程也是同分片的合并成一个片段(segment),最终所有的segment组装成一个最终文件,那么合并过程就完成了,如下图所示

Hadoop和Spark的Shuffle过程有什么不同

至此,Map的操作就已经完成,Reduce端操作即将登场

Reduce操作

总体过程如下图的红框处:

![image](/upload/otherpic61/71a52ed4799d3dbbde4552028f3aea05bc1c98c0.png)  1、拉取拷贝(fetch copy)

Reduce任务通过向各个Map任务拉取对应分片。这个过程都是以Http协议完成,每个Map节点都会启动一个常驻的HTTP  server服务,Reduce节点会请求这个Http Server拉取数据,这个过程完全通过网络传输,所以是一个非常重量级的操作。

2、合并排序

Reduce端,拉取到各个Map节点对应分片的数据之后,会进行再次排序,排序完成,结果丢给Reduce函数进行计算。

四、总结

至此整个shuffle过程完成,***总结几点:

  1. shuffle过程就是为了对key进行全局聚合

  2. 排序操作伴随着整个shuffle过程,所以Hadoop的shuffle是sort-based的

Spark shuffle相对来说更简单,因为不要求全局有序,所以没有那么多排序合并的操作。Spark  shuffle分为write和read两个过程。我们先来看shuffle write。

  • 一、shuffle write

shuffle  write的处理逻辑会放到该ShuffleMapStage的***(因为spark以shuffle发生与否来划分stage,也就是宽依赖),final  RDD的每一条记录都会写到对应的分区缓存区bucket,如下图所示:

Hadoop和Spark的Shuffle过程有什么不同

说明:

  1. 上图有2个CPU,可以同时运行两个ShuffleMapTask

  2. 每个task将写一个buket缓冲区,缓冲区的数量和reduce任务的数量相等

  3. 每个buket缓冲区会生成一个对应ShuffleBlockFile

  4. ShuffleMapTask  如何决定数据被写到哪个缓冲区呢?这个就是跟partition算法有关系,这个分区算法可以是hash的,也可以是range的

  5. 最终产生的ShuffleBlockFile会有多少呢?就是ShuffleMapTask 数量乘以reduce的数量,这个是非常巨大的

那么有没有办法解决生成文件过多的问题呢?有,开启FileConsolidation即可,开启FileConsolidation之后的shuffle过程如下:

Hadoop和Spark的Shuffle过程有什么不同

在同一核CPU执行先后执行的ShuffleMapTask可以共用一个bucket缓冲区,然后写到同一份ShuffleFile里去,上图所示的ShuffleFile实际上是用多个ShuffleBlock构成,那么,那么每个worker最终生成的文件数量,变成了cpu核数乘以reduce任务的数量,大大缩减了文件量。

  • 二、Shuffle read

Shuffle write过程将数据分片写到对应的分片文件,这时候万事具备,只差去拉取对应的数据过来计算了。

那么Shuffle Read发送的时机是什么?是要等所有ShuffleMapTask执行完,再去fetch数据吗?理论上,只要有一个  ShuffleMapTask执行完,就可以开始fetch数据了,实际上,spark必须等到父stage执行完,才能执行子stage,所以,必须等到所有  ShuffleMapTask执行完毕,才去fetch数据。fetch过来的数据,先存入一个Buffer缓冲区,所以这里一次性fetch的FileSegment不能太大,当然如果fetch过来的数据大于每一个阀值,也是会spill到磁盘的。

fetch的过程过来一个buffer的数据,就可以开始聚合了,这里就遇到一个问题,每次fetch部分数据,怎么能实现全局聚合呢?以word  count的reduceByKey(《Spark RDD操作之ReduceByKey  》)为例,假设单词hello有十个,但是一次fetch只拉取了2个,那么怎么全局聚合呢?Spark的做法是用HashMap,聚合操作实际上是map.put(key,map.get(key)+1),将map中的聚合过的数据get出来相加,然后put回去,等到所有数据fetch完,也就完成了全局聚合。

感谢各位的阅读,以上就是“Hadoop和Spark的Shuffle过程有什么不同”的内容了,经过本文的学习后,相信大家对Hadoop和Spark的Shuffle过程有什么不同这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


文章名称:Hadoop和Spark的Shuffle过程有什么不同
文章链接:http://chengdu.cdxwcx.cn/article/jsejjc.html