成都网站建设设计

将想法与焦点和您一起共享

怎么理解Python的控制结构

本篇内容介绍了“怎么理解Python的控制结构”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

创新互联技术团队十年来致力于为客户提供网站设计、成都做网站、高端网站设计成都全网营销、搜索引擎SEO优化等服务。经过多年发展,公司拥有经验丰富的技术团队,先后服务、推广了成百上千网站,包括各类中小企业、企事单位、高校等机构单位。

01 for循环

for循环是Python的一种最基本的控制结构。使用for循环的一种常见模式是使用range函数生成数值范围,然后对其进行迭代。

res = range(3) print(list(res))  #输出:[0, 1, 2]
for i in range(3): print(i)  '''输出: 0 1 2 '''
  • for循环列表

使用for循环的另一种常见模式是对列表进行迭代。

martial_arts = ["Sambo","Muay Thai","BJJ"] for martial_art in martial_arts:     print(f"{ martial_art} has influenced\           modern mixed martial arts")  '''输出: Sambo has influenced modern mixed martial arts Muay Thai has influenced modern mixed martial arts BJJ has influenced modern mixed martial arts '''

02 while循环

while循环是一种条件有效就会重复执行的循环方式。while循环的常见用途是创建无限循环。在本示例中,while循环用于过滤函数,该函数返回两种攻击类型中的一种。

def attacks():     list_of_attacks = ["lower_body", "lower_body",          "upper_body"]     print("There are a total of {lenlist_of_attacks)}\           attacks coming!")     for attack in list_of_ attacks:         yield attack attack = attacks() count = 0 while next(attack) == "lower_body":     count +=1     print(f"crossing legs to prevent attack #{count}") else:     count += 1     print(f"This is not lower body attack, \ I will cross my arms for# count}")  '''输出: There are a total of 3 attacks coming! crossing legs to prevent attack #1 crossing legs to prevent attack #2 This is not a lower body attack, I will cross my arms for #3 '''

03 if/else语句

if/else语句是一条在判断之间进行分支的常见语句。在本示例中,if/elif用于匹配分支。如果没有匹配项,则执行最后一条else语句。

def recommended_attack(position):     """Recommends an attack based on the position"""     if position == "full_guard":         print(f"Try an armbar attack")     elif position == "half_guard":         print(f"Try a kimura attack")     elif position == "fu1l_mount":         print(f"Try an arm triangle")     else:         print(f"You're on your own, \          there is no suggestion for an attack")
recommended_attack("full_guard")#输出:Try an armbar attack
recommended_attack("z_guard")  #输出:You're on your own, there is no suggestion for an attack

04 生成器表达式

生成器表达式建立在yield语句的概念上,它允许对序列进行惰性求值。生成器表达式的益处是,在实际求值计算前不会对任何内容进行求值或将其放入内存。这就是下面的示例可以在生成的无限随机攻击序列中执行的原因。

在生成器管道中,诸如 “arm_triangle”的小写攻击被转换为“ARM_TRIANGLE”,接下来删除其中的下划线,得到“ARM  TRIANGLE”。

 def lazy_return_random_attacks():      """Yield attacks each time"""      import random      attacks = {"kimura": "upper_body",             "straight_ankle_lock": "lower_body",             "arm_triangle": "upper_body",              "keylock": "upper_body",              "knee_bar": "lower_body"}      while True:          random_attack random.choices(list(attacks.keys()))          yield random attack  #Make all attacks appear as Upper Case upper_case_attacks = \          (attack.pop().upper() for attack in \          lazy_return_random_attacks())
next(upper-case_attacks)  #输出:ARM-TRIANGLE
## Generator Pipeline: One expression chains into the next #Make all attacks appear as Upper Case upper-case_attacks =\     (attack. pop().upper() for attack in\     lazy_return_random_attacks()) #remove the underscore remove underscore =\     (attack.split("_")for attack in\     upper-case_attacks) #create a new phrase new_attack_phrase =\     (" ".join(phrase) for phrase in\     remove_underscore)
next(new_attack_phrase)  #输出:'STRAIGHT ANKLE LOCK'
for number in range(10):     print(next(new_attack_phrase))  '''输出: KIMURA KEYLOCK STRAIGHT ANKLE LOCK '''

05 列表推导式

语法上列表推导式与生成器表达式类似,然而直接对比它们,会发现列表推导式是在内存中求值。此外,列表推导式是优化的C代码,可以认为这是对传统for循环的重大改进。

martial_arts = ["Sambo", "Muay Thai", "BJJ"] new_phrases [f"mixed Martial Arts is influenced by \     (martial_art)" for martial_art in martial_arts]
print(new_phrases) ['Mixed Martial Arts is influenced by Sambo', \ 'Mixed Martial Arts is influenced by Muay Thai', \ 'Mixed Martial Arts is influenced by BJJ']

06 中级主题

有了这些基础知识后,重要的是不仅要了解如何创建代码,还要了解如何创建可维护的代码。创建可维护代码的一种方法是创建一个库,另一种方法是使用已经安装的第三方库编写的代码。其总体思想是最小化和分解复杂性。

  • 使用Python编写库

使用Python编写库非常重要,之后将该库导入项目无须很长时间。下面这些示例是编写库的基础知识:在存储库中有一个名为funclib的文件夹,其中有一个_init_  .py文件。要创建库,在该目录中需要有一个包含函数的模块。

首先创建一个文件。

touch funclib/funcmod.py

然后在该文件中创建一个函数。

"""This is a simple module""" def list_of_belts_in_bjj():     """Returns a list of the belts in Brazilian jiu-jitsu"""     belts= ["white", "blue", "purple", "brown", "black"]     return belts
import sys;sys.path.append("..") from funclib import funcmod funcmod.list_of_belts_in-bjj()  #输出:['white', 'blue', 'purple', 'brown', 'black']
  • 导入库

如果库是上面的目录,则可以用Jupyter添加sys.path.append方法来将库导入。接下来,使用前面创建的文件夹/文件名/函数名的命名空间导入模块。

  • 安装第三方库

可使用pip install命令安装第三方库。请注意,conda命令(

https://conda.io/docs/user-guide/tasks/manage-pkgs.html)是pip命令的可选替代命令。如果使用conda命令,那么pip命令也会工作得很好,因为pip是virtualenv虚拟环境的替代品,但它也能直接安装软件包。

安装pandas包。

pip install pandas

另外,还可使用requirements.txt文件安装包。

> ca requirements.txt pylint pytest pytest-cov click jupyter nbval  > pip install -r requirements.txt

下面是在Jupyter Notebook中使用小型库的示例。值得指出的是,在Jupyter  Notebook中创建程序代码组成的巨型蜘蛛网很容易,而且非常简单的解决方法就是创建一些库,然后测试并导入这些库。

"""This is a simple module"""  import pandas as pd  def list_of_belts_in_bjj():     """Returns a list of the belts in Brazilian jiu-jitsu"""      belts = ["white", "blue", "purple", "brown", "black"]     return belts  def count_belts():     """Uses Pandas to count number of belts"""      belts = list_of_belts_in_bjj()     df = pd.Dataframe(belts)     res = df.count()     count = res.values.tolist()[0]     return count
from funclib.funcmod import count_belts
print(count_belts())  #输出:5

可在Jupyter Notebook中重复使用类并与类进行交互。最简单的类类型就是一个名称,类的定义形式如下。

class Competitor: pass

该类可实例化为多个对象。

class Competitor: pass
conor = Competitor() conor.name = "Conor McGregor" conor.age = 29 conor.weight = 155
nate = Competitor() nate.name = "Nate Diaz" nate.age = 30 nate.weight = 170
def print_competitor _age(object):     """Print out age statistics about a competitor"""      print(f"{object.name} is {object.age} years old")
print_competitor_age(nate)  #输出:Nate Diaz is 30 years old
print_competitor_age(conor)  #输出:Conor McGregor is 29 years old
  • 类和函数的区别

类和函数的主要区别包括:

  • 函数更容易解释。

  • 函数(典型情况下)只在函数内部具有状态,而类在函数外部保持不变的状态。

  • 类能以复杂性为代价提供更高级别的抽象。

“怎么理解Python的控制结构”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


标题名称:怎么理解Python的控制结构
本文地址:http://chengdu.cdxwcx.cn/article/jossgj.html