小编这次要用代码详解Pytorch的环境搭建与基本语法,文章内容丰富,感兴趣的小伙伴可以来了解一下,希望大家阅读完这篇文章之后能够有所收获。
成都创新互联公司专注于汪清企业网站建设,自适应网站建设,成都做商城网站。汪清网站建设公司,为汪清等地区提供建站服务。全流程按需定制制作,专业设计,全程项目跟踪,成都创新互联公司专业和态度为您提供的服务基本思路选择
以前我用过Caffe,用过tensorflow,最近一直在用pytorch感觉特别好用。所以打算写点我学习的过程跟经验,如果你是一个pytorch的高手自然可以忽略,如果你也打算学习pytorch框架,那就跟我一起学习吧,所谓独学而无友,孤陋而寡闻!
pytorch安装
01
演示系统环境
CPU版本
install pytorch torchvision cpuonly -c pytorch
GPU版本
install pytorch torchvision cudatoolkit=10.0 -c pytorch
测试安装是否正常, CUDA支持正常
测试结果一切正常!
安装的时候你还可以更直接点
pip install pytorch torchvision
就好啦!我知道很多人喜欢用各种python的工具跟IDE做开发,那些都是个人爱好,喜欢就好,但是千万别强迫别人跟你一样!有IDE强迫症!我从开始学习python就一直用pycharm!千万别问我好用不好用,方便不方便!觉得适合自己即可。
Pytorch基本语法演示
02
演示了pytorch中基本常量、变量、矩阵操作、CUDA调用,numpy与tensor转化,维度转化,自动梯度等基本知识。代码如下:
from __future__ import print_function import torch import numpy as np print(torch.__version__) # 定义矩阵 x = torch.empty(2, 2) print(x) # 定义随机初始化矩阵 x = torch.randn(2, 2) print(x) # 定义初始化为零 x = torch.zeros(3, 3) print(x) # 定义数据为tensor x = torch.tensor([5.1, 2., 3., 1.]) print(x) # 操作 a = torch.tensor([1.,2.,3.,4.,5.,6.,7.,8.]) b = torch.tensor([11.,12.,13.,14.,15.,16.,17.,18.]) c = a.add(b) print(c) # 维度变换 2x4 a = a.view(-1, 4) b = b.view(-1, 4) c = torch.add(a, b) print(c, a.size(), b.size()) # torch to numpy and visa na = a.numpy() nb = b.numpy() print("\na =",na,"\nb =", nb) # 操作 d = np.array([21.,22.,23.,24.,25.,26.,27.,28.], dtype=np.float32) print(d.reshape(2, 4)) d = torch.from_numpy(d.reshape(2, 4)) sum = torch.sub(c, d) print(sum, "\n sum = ", sum.size()) # using CUDA if torch.cuda.is_available(): result = d.cuda() + c.cuda() print("\n result = ", result) # 自动梯度 x = torch.randn(1, 5, requires_grad=True) y = torch.randn(5, 3, requires_grad=True) z = torch.randn(3, 1, requires_grad=True) print("\nx=",x, "\ny=",y, "\nz=",z) xy = torch.matmul(x, y) xyz = torch.matmul(xy, z) xyz.backward() print(x.grad, y.grad, z.grad)
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。