本期内容:
创新互联成立与2013年,先为霍城等服务建站,霍城等地企业,进行企业商务咨询服务。为霍城企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
1、Spark Streaming资源动态分配
2、Spark Streaming动态控制消费速率
为什么需要动态?
a)Spark默认情况下粗粒度的,先分配好资源再计算。对于Spark Streaming而言有高峰值和低峰值,但是他们需要的资源是不一样的,如果按照高峰值的角度的话,就会有大量的资源浪费。
b) Spark Streaming不断的运行,对资源消耗和管理也是我们要考虑的因素。
Spark Streaming资源动态调整的时候会面临挑战:
Spark Streaming是按照Batch Duration运行的,Batch Duration需要很多资源,下一次Batch Duration就不需要那么多资源了,调整资源的时候还没调整完Batch Duration运行就已经过期了。这个时候调整时间间隔。
Spark Streaming资源动态申请
1. 在SparkContext中默认是不开启动态资源分配的,但是可以通过手动在SparkConf中配置。
// Optionally scale number of executors dynamically based on workload. Exposed for testing. val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf) if (!dynamicAllocationEnabled && _conf.getBoolean("spark.dynamicAllocation.enabled", false)) { logWarning("Dynamic Allocation and num executors both set, thus dynamic allocation disabled.") } _executorAllocationManager = if (dynamicAllocationEnabled) { Some(new ExecutorAllocationManager(this, listenerBus, _conf)) } else { None } _executorAllocationManager.foreach(_.start())
设置spark.dynamicAllocation.enabled参数为true
这里会通过实例化ExecutorAllocationManager对象来动态分配资源,其内部是有定时器会不断的去扫描Executor的情况,通过线程池的方式调用schedule()来完成资源动态分配。
/** * Register for scheduler callbacks to decide when to add and remove executors, and start * the scheduling task. */ def start(): Unit = { listenerBus.addListener(listener) val scheduleTask = new Runnable() { override def run(): Unit = { try { schedule() //动态调整Executor分配数量 } catch { case ct: ControlThrowable => throw ct case t: Throwable => logWarning(s"Uncaught exception in thread ${Thread.currentThread().getName}", t) } } } executor.scheduleAtFixedRate(scheduleTask, 0, intervalMillis, TimeUnit.MILLISECONDS) }
private def schedule(): Unit = synchronized { val now = clock.getTimeMillis updateAndSyncNumExecutorsTarget(now) //更新Executor数量 removeTimes.retain { case (executorId, expireTime) => val expired = now >= expireTime if (expired) { initializing = false removeExecutor(executorId) } !expired } }
/** * Updates our target number of executors and syncs the result with the cluster manager. * * Check to see whether our existing allocation and the requests we've made previously exceed our * current needs. If so, truncate our target and let the cluster manager know so that it can * cancel pending requests that are unneeded. * * If not, and the add time has expired, see if we can request new executors and refresh the add * time. * * @return the delta in the target number of executors. */ private def updateAndSyncNumExecutorsTarget(now: Long): Int = synchronized { val maxNeeded = maxNumExecutorsNeeded if (initializing) { // Do not change our target while we are still initializing, // Otherwise the first job may have to ramp up unnecessarily 0 } else if (maxNeeded < numExecutorsTarget) { // The target number exceeds the number we actually need, so stop adding new // executors and inform the cluster manager to cancel the extra pending requests val oldNumExecutorsTarget = numExecutorsTarget numExecutorsTarget = math.max(maxNeeded, minNumExecutors) numExecutorsToAdd = 1 // If the new target has not changed, avoid sending a message to the cluster manager if (numExecutorsTarget < oldNumExecutorsTarget) { client.requestTotalExecutors(numExecutorsTarget, localityAwareTasks, hostToLocalTaskCount) logDebug(s"Lowering target number of executors to $numExecutorsTarget (previously " + s"$oldNumExecutorsTarget) because not all requested executors are actually needed") } numExecutorsTarget - oldNumExecutorsTarget } else if (addTime != NOT_SET && now >= addTime) { val delta = addExecutors(maxNeeded) logDebug(s"Starting timer to add more executors (to " + s"expire in $sustainedSchedulerBacklogTimeoutS seconds)") addTime += sustainedSchedulerBacklogTimeoutS * 1000 delta } else { 0 } }
动态控制消费速率:
Spark Streaming提供了一种弹性机制,流进来的速度和处理速度的关系,是否来得及处理数据。如果不能来得及的话,他会自动动态控制数据流进来的速度,spark.streaming.backpressure.enabled参数设置。