成都网站建设设计

将想法与焦点和您一起共享

CNN怎么实现数字识别并改变参数-创新互联

这篇文章主要讲解了“CNN怎么实现数字识别并改变参数”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“CNN怎么实现数字识别并改变参数”吧!

网站建设、网站制作中从网站色彩、结构布局、栏目设置、关键词群组等细微处着手,突出企业的产品/服务/品牌,帮助企业锁定精准用户,提高在线咨询和转化,使成都网站营销成为有效果、有回报的无锡营销推广。创新互联建站专业成都网站建设10年了,客户满意度97.8%,欢迎成都创新互联客户联系。

  1.网络层级结构概述

  Input layer: 输入数据为原始训练图像

  Conv1:6 个 5 * 5 的卷积核,步长 Stride 为 1

  Pooling1:卷积核 size 为 2 * 2,步长 Stride 为 2

  Conv2:12 个 5 * 5 的卷积核,步长 Stride 为 1

  Pooling2:卷积核 size 为 2 * 2,步长 Stride 为 2

  Output layer:输出为 10 维向量

  2.实验基本流程

  (1)获取训练数据和测试数据

  直接使用keras里面的手写数据集

  from keras.datasets import mnist

  (x_train, y_train), (x_test, y_test) = mnist.load_data()

  (2)定义网络层级结构

  代码:

  def get_model():

  model = Sequential()

  model.add(Conv2D(filters=6, kernel_size=(5, 5),strides=1,activation='relu',input_shape=(28, 28, 1)))

  model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

  model.add(Conv2D(filters=12, kernel_size=(5, 5),strides=1,activation='relu'))

  model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

  model.add(Flatten())

  #model.add(Conv2D(filters=120, kernel_size=(5, 5),activation='relu'))

  model.add(Dense(120, activation='relu'))

  model.add(Dense(84, activation='relu'))

  model.add(Dropout(0.5))

  model.add(Dense(10, activation='softmax'))

  # 编译模型,采用多分类的损失函数,优化器是Adadelta

  model.compile(loss='categorical_crossentropy',

  optimizer='Adadelta',

  metrics=['accuracy'])

  return model

  (3)交叉验证

  直接附上代码

  def k_cross(data,target,bsize,epoch,sp):

  print("------进行交叉验证------")

  ans=0 #交叉验证正确率的和

  kf = KFold(n_splits=sp, shuffle = True)

  for train, test in kf.split(data):

  model.fit(data[train], target[train],

  batch_size=bsize,

  epochs=epoch,

  verbose=0,

  validation_data=(data[test], target[test]))

  score = model.evaluate(data[test], target[test], verbose=0)

  ans+=score[1]

  return ans/sp

  3完整代码

  我这里直接就3折了,太多了运行时间太长。

  最后完整代码:

  # -*- coding: utf-8 -*-

  """

  Created on Tue Dec 10 15:42:27 2019

  @author: pff

  """

  from __future__ import print_function

  import numpy as np

  import keras

  from keras.datasets import mnist

  from keras.models import Sequential

  from keras.layers import Dense, Dropout, Flatten

  from keras.layers import Conv2D, MaxPooling2D

  from sklearn.model_selection import KFold

  import matplotlib.pyplot as plt

  def getdata():

  #提取出训练集和测试集

  (x_train, y_train), (x_test, y_test) = mnist.load_data()

  x_train = x_train.astype('float32')

  x_test = x_test.astype('float32')

  x_train /= 255

  x_test /= 255

  x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

  x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

  # 采用one-hot编码

  y_train = keras.utils.to_categorical(y_train, 10)

  y_test = keras.utils.to_categorical(y_test, 10)

  #将测试集和训练集合并,便于后面交叉验证

  data = np.row_stack((x_train,x_test))

  target = np.row_stack((y_train,y_test))

  return data, target

  # 构建模型

  def get_model():

  model = Sequential()郑州做无痛人流手术费用 http://www.zzzykdfk.com/

  model.add(Conv2D(filters=6, kernel_size=(5, 5),strides=1,activation='relu',input_shape=(28, 28, 1)))

  model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

  model.add(Conv2D(filters=12, kernel_size=(5, 5),strides=1,activation='relu'))

  model.add(MaxPooling2D(pool_size=(2, 2),strides=2))

  model.add(Flatten())

  #model.add(Conv2D(filters=120, kernel_size=(5, 5),activation='relu'))

  model.add(Dense(120, activation='relu'))

  model.add(Dense(84, activation='relu'))

  model.add(Dropout(0.5))

  model.add(Dense(10, activation='softmax'))

  # 编译模型,采用多分类的损失函数,用 Adadelta 算法做优化方法

  model.compile(loss='categorical_crossentropy',

  optimizer='Adadelta',

  metrics=['accuracy'])

  return model

  def kcross(data,target,bsize,epoch,sp):

  print("------进行交叉验证------")

  ans=0

  kf = KFold(n_splits=sp, shuffle = True)

  for train, test in kf.split(data):

  #print("第{}次开始".format(i+1))

  model.fit(data[train], target[train],

  batch_size=bsize,

  epochs=epoch,

  verbose=0,

  validation_data=(data[test], target[test]))

  score = model.evaluate(data[test], target[test], verbose=0)

  ans+=score[1]

  return ans/sp

  #画结果图

  def draw(batch_size,y,epoch):

  plt.figure()

  plt.rcParams['font.sans-serif']='SimHei'

  plt.ylabel('正确率')

  plt.xlabel('batch_size')

  plt.title('不同参数下卷积神经网络数字识别图')

  for i in range(len(y)):

  plt.scatter(batch_size, y[i], s=30, c='r', marker='x', linewidths=1)

  plt.plot(batch_size,y[i],label="epoch:"+str(epoch[i]))

  plt.legend()

  plt.show()

  if __name__=="__main__":

  data,target=getdata()

  model=get_model()

  '''

  设置epoch和baitch_size参数

  y:存储每一次的结果

  '''

  epoch=[1,3,5,7]

  size=[50,100,150,200,250]

  y=np.zeros([4,5])

  for i in range(len(epoch)):

  for j in range(len(size)):

  print("now:",i,j)

  y[i,j]=kcross(data,target,size[j],epoch[i],3)

  draw(size,y,epoch)

  最后得出运行结果

感谢各位的阅读,以上就是“CNN怎么实现数字识别并改变参数”的内容了,经过本文的学习后,相信大家对CNN怎么实现数字识别并改变参数这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


分享名称:CNN怎么实现数字识别并改变参数-创新互联
URL链接:http://chengdu.cdxwcx.cn/article/ieohg.html