朴素:特征条件独立 贝叶斯:基于贝叶斯定理 根据贝叶斯定理,对一个分类问题,给定样本特征x,样本属于类别y的概率是 p(y|x)=p(x|y)p(y)p(x) 在这里,x是一个特征向量,将设x维度为M。
成都创新互联从2013年开始,是专业互联网技术服务公司,拥有项目网站建设、成都网站建设网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元临海做网站,已为上家服务,为临海各地企业和个人服务,联系电话:028-86922220
1,前言
很久不发文章,主要是Copy别人的总感觉有些不爽,所以整理些干货,希望相互学习吧。不啰嗦,进入主题吧,本文主要时说的为朴素贝叶斯分类算法。与逻辑回归,决策树一样,是较为广泛使用的有监督分类算法,简单且易于理解(号称十大数据挖掘算法中最简单的算法)。但其在处理文本分类,邮件分类,拼写纠错,中文分词,统计机器翻译等自然语言处理范畴较为广泛使用,或许主要得益于基于概率理论,本文主要为小编从理论理解到实践的过程记录。
2,公式推断
一些贝叶斯定理预习知识:我们知道当事件A和事件B独立时,P(AB)=P(A)(B),但如果事件不独立,则P(AB)=P(A)P(B|A)。为两件事件同时发生时的一般公式,即无论事件A和B是否独立。当然也可以写成P(AB)=P(B)P(A|B),表示若要两件事同事发生,则需要事件B发生后,事件A也要发生。
由上可知,P(A)P(B|A)= P(B)P(A|B)
推出P(B|A)=
其中P(B)为先验概率,P(B|A)为B的后验概率,P(A|B)为A的后验概率(在这里也为似然值),P(A)为A的先验概率(在这也为归一化常量)。
由上推导可知,其实朴素贝叶斯法就是在贝叶斯定理基础上,加上特征条件独立假设,对特定输入的X(样本,包含N个特征),求出后验概率最大值时的类标签Y(如是否为垃圾邮件),理解起来比逻辑回归要简单多,有木有,这也是本算法优点之一,当然运行起来由于得益于特征独立假设,运行速度也更快。
. 参数估计
3,参数估计
由上面推断出的公式,我们知道其实朴素贝叶斯方法的学习就是对概率P(Y=ck)和P(X(j)=x(j)|Y=ck)的估计。我们可以用极大似然估计法估计上述先验概率和条件概率。
其中I(x)为指示函数,若括号内成立,则计1,否则为0。李航的课本直接给出了用极大似然(MLE)估计求出的结果,并没给推导过程,
我们知道,贝叶斯较为常见的问题为0概率问题。为此,需要平滑处理,主要使用拉普拉斯平滑,如下所示:
K是类的个数,Sj是第j维特征的最大取值。实际上平滑因子λ=0即为最大似然估计,这时会出现提到的0概率问题;而λ=1则避免了0概率问题,这种方法被称为拉普拉斯平滑。
4,算法流程
5,朴素贝叶斯算法优缺点
优点:朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率
需调参较少,简单高效,尤其是在文本分类/垃圾文本过滤/情感判别等自然语言处理有广泛应用。
在样本量较少情况下,也能获得较好效果,计算复杂度较小,即使在多分类问题。
无论是类别类输入还是数值型输入(默认符合正态分布)都有相应模型可以运用。
缺点:0概率问题,需要平滑处理,通常为拉普拉斯平滑,但加一平滑不一定为效果最好,
朴素贝叶斯有分布独立的假设前提,生活中较少完全独立,在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
模型注意点:
1, 大家也知道,很多特征是连续数值型的,一般选择使用朴素贝叶斯高斯模型。
2, 为避免0概率事件,记得平滑,简单一点可以用『拉普拉斯平滑』。先处理处理特征,把相关特征去掉,
3, 朴素贝叶斯分类器一般可调参数比较少,需集中精力进行数据的预处理等特征工程工作。
6,Scikit-learn三大朴素贝叶斯模型
Scikit-learn里面有3种不同类型的朴素贝叶斯(:
1, 高斯分布型模型:用于classification问题,假定属性/特征是服从正态分布的,一般用在数值型特征。,
2, 多项式型模型:用于离散值模型里。比如文本分类问题里面我们提到过,我们不光看词语是否在文本中出现,也得看出现的次数。如果总词数为n,出现词数为m的话,说起来有点像掷骰子n次出现m次这个词的场景。
3, 伯努利模型:这种情况下,就如提到的bag ofwords处理方式一样,最后得到的特征只有0(没出现)和1(出现过)。
7. Scikit-learn算法实践
小编通过实现朴素贝叶斯三种模型以及主要分类算法,对比发现跟SVM,随机森林,融合算法相比,贝叶斯差距明显,但其时间消耗要远低于上述算法,以下为主要算法主要评估指标)。
8. Python代码
# -*-coding: utf-8 -*-
importtime
fromsklearn import metrics
fromsklearn.naive_bayes import GaussianNB
fromsklearn.naive_bayes import MultinomialNB
fromsklearn.naive_bayes import BernoulliNB
fromsklearn.neighbors import KNeighborsClassifier
fromsklearn.linear_model import LogisticRegression
fromsklearn.ensemble import RandomForestClassifier
fromsklearn import tree
fromsklearn.ensemble import GradientBoostingClassifier
fromsklearn.svm import SVC
importnumpy as np
importurllib
# urlwith dataset
url ="-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
#download the file
raw_data= urllib.request.urlopen(url)
#load the CSV file as a numpy matrix
dataset= np.loadtxt(raw_data, delimiter=",")
#separate the data from the target attributes
X =dataset[:,0:7]
#X=preprocessing.MinMaxScaler().fit_transform(x)
#print(X)
y =dataset[:,8]
print("\n调用scikit的朴素贝叶斯算法包GaussianNB ")
model= GaussianNB()
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print("\n调用scikit的朴素贝叶斯算法包MultinomialNB ")
model= MultinomialNB(alpha=1)
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print("\n调用scikit的朴素贝叶斯算法包BernoulliNB ")
model= BernoulliNB(alpha=1,binarize=0.0)
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print("\n调用scikit的KNeighborsClassifier ")
model= KNeighborsClassifier()
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print("\n调用scikit的LogisticRegression(penalty='l2') ")
model= LogisticRegression(penalty='l2')
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print("\n调用scikit的RandomForestClassifier(n_estimators=8) ")
model= RandomForestClassifier(n_estimators=8)
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print("\n调用scikit的tree.DecisionTreeClassifier() ")
model= tree.DecisionTreeClassifier()
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print("\n调用scikit的GradientBoostingClassifier(n_estimators=200) ")
model= GradientBoostingClassifier(n_estimators=200)
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print("\n调用scikit的SVC(kernel='rbf', probability=True) ")
model= SVC(kernel='rbf', probability=True)
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
"""
# 预处理代码集锦
importpandas as pd
df=pd.DataFrame(dataset)
print(df.head(3))
print(df.describe())##描述性分析
print(df.corr())##各特征相关性分析
##计算每行每列数据的缺失值个数
defnum_missing(x):
return sum(x.isnull())
print("Missing values per column:")
print(df.apply(num_missing, axis=0)) #axis=0代表函数应用于每一列
print("\nMissing values per row:")
print(df.apply(num_missing, axis=1).head()) #axis=1代表函数应用于每一行"""
R编程语言已经成为统计分析中的事实标准。但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易。我要使用Python实现一些离散和连续的概率分布。虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料。在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable)。随机变量是对一次试验结果的量化。
举个例子,一个表示抛硬币结果的随机变量可以表示成
Python
1
2
X = {1 如果正面朝上,
2 如果反面朝上}
随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性。随机变量的每个可能取值的都与一个概率相关联。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion)。
我鼓励大家仔细研究一下scipy.stats模块。
概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。
离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。
连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。
若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频。
二项分布(Binomial Distribution)
服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p。
E(X) = np, Var(X) = np(1−p)
如果你想知道每个函数的原理,你可以在IPython笔记本中使用help file命令。 E(X)表示分布的期望或平均值。
键入stats.binom?了解二项分布函数binom的更多信息。
二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?
假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的。我定义掷硬币的所有可能结果为k = np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf计算每次观测的概率质量函数。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值。
您可以使用.rvs函数模拟一个二项随机变量,其中参数size指定你要进行模拟的次数。我让Python返回10000个参数为n和p的二项式随机变量。我将输出这些随机变量的平均值和标准差,然后画出所有的随机变量的直方图。
泊松分布(Poisson Distribution)
一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。
E(X) = λ, Var(X) = λ
泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?
让我们考虑这个平均每天发生2起事故的例子。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数。泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率。我用结果生成了以下图片。
你可以看到,事故次数的峰值在均值附近。平均来说,你可以预计事件发生的次数为λ。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的。
现在我来模拟1000个服从泊松分布的随机变量。
正态分布(Normal Distribution)
正态分布是一种连续分布,其函数可以在实线上的任何地方取值。正态分布由两个参数描述:分布的平均值μ和方差σ2 。
E(X) = μ, Var(X) = σ2
正态分布的取值可以从负无穷到正无穷。你可以注意到,我用stats.norm.pdf得到正态分布的概率密度函数。
β分布(Beta Distribution)
β分布是一个取值在 [0, 1] 之间的连续分布,它由两个形态参数α和β的取值所刻画。
β分布的形状取决于α和β的值。贝叶斯分析中大量使用了β分布。
当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniform distribution)。尝试不同的α和β取值,看看分布的形状是如何变化的。
指数分布(Exponential Distribution)
指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等。
我将参数λ设置为0.5,并将x的取值范围设置为 $[0, 15]$ 。
接着,我在指数分布下模拟1000个随机变量。scale参数表示λ的倒数。函数np.std中,参数ddof等于标准偏差除以 $n-1$ 的值。
结语(Conclusion)
概率分布就像盖房子的蓝图,而随机变量是对试验事件的总结。我建议你去看看哈佛大学数据科学课程的讲座,Joe Blitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部。
1、背景
《机器学习实战》当中,用python根据贝叶斯公式实现了基本的分类算法。现在来看看用sklearn,如何实现。还拿之前的例子,对帖子的分类。数据如下:
补充:题目的值左边是几个人的评论,右边是评论属于侮辱类(1)、正常类(0),需要进行文本分类,且再有新的文本过来时能自动划分至0或1。
2、分类
(1)算法的准备
通过查看sklearn的训练模型函数,fit(X, Y),发现只需要准备两个参数。一个是数据的矩阵,另一个是数据的分类数组。首先就是将以上的文本转化成矩阵。
在前一章其实已经讲解过如何将文本转化成矩阵。这里将示意的再补充下。
a.首先选取所有的单词,形成列,也可理解为属性。例如:
b.其次将遍历每个文本,填满上述列的值。文本出现过列的次,填一。没有出现过填0。比如第一句就是:my dog has flea problems help please,可表示为:
同理所有的文本都可如此表示,所以就形成了一个数字的矩阵。
(2)beyes模型的选择
在完成数据的准备以后,就可以直接调用sklearn的模型和函数完成模型的训练啦。但在beyes模型的选择的时候发现,beyes下有多个模型可选择,所以这个会让人纠结。接下来共同了解下这些模型:
a.高斯模型(GaussianNB)
高斯模型是对于每个属性的值是连续的,且服从高斯分布时可使用:
比如人的身高,比如花的高度等等。当然你也可将这些数据离散化,比如按等距划分、等频划分成离散的值,但可能效果都没有直接用高斯模型来计算的好。
用法:class sklearn.naive_bayes.GaussianNB
参数:无
b.多项式模型(MultinominalNB)
如果大部分是多元离散值,则采用多项式模型要好些。多项式模型,通常就是构造参数向量,然后通过极大似然估计来寻求参数的最有值。
这里只简单的略列一些公式,具体可查询更多资料。从这个计算过程中可得出,这里引入啦一个平滑先验值alpha,这个值在模型训练的时候也会用到。通常alpha0,可引入不在训练集的特征,尤其当alpha=1,成为拉普拉丝平滑。具体alpha取值对模型的影响可附件的图。
用法:class sklearn.naive_bayes.MultinomialNB(alpha=1.0,fit_prior=True,class_prior=None)
参数:
alpha:浮点数,就是上述说的引入平滑的值;
fit_prior:bool值,如果为Ture,则不用去学习P(y=ck),以均匀分布替代,否则则去学习P(y=ck)(不懂)
class_prior:一个数组。它指定了每个分类的先验概率P(y=c1),P(y=c2)…..,若指定了该参数
则每个分类的先验概率无需学习 (不懂)
c.伯努利模型(BernoulliNB)
如果特征值为二元离散值或是稀疏的多元离散值,则可采用伯努利模型。
公式:class sklearn.naive_bayes.BernoulliNB(alpha=1.0,binarize=0.0,fit_prior=Ture,
class_prior=None)
参数:
binarize:一个浮点数或者None,如果为浮点数则以该数值为界,特征值大于它的取1,小于的为0 。如果为None,假定原始数据已经二值化
其它参数同上。
通过以上的模型对比和分析,由于文本分析转化后是很多二项取值的稀疏矩阵,因此选取伯努利模型效果会更佳。
补充:alpha、binarize值对模型效果的影响
Bayesian-belief-networks允许你用纯Python创建贝叶斯信念网络和其他图模型,目前支持四种不同的推理方法。
支持的图模型
离散变量的贝叶斯信念网络
有着高斯分布的连续变量的高斯贝叶斯网络
推理引擎
消息传递和联合树算法(Junction Tree Algorithm)
和积算法(The Sum Product Algorithm)
MCMC采样的近似推理
高斯贝叶斯网络中得Exact Propagation