成都网站建设设计

将想法与焦点和您一起共享

python检测图片函数 python做函数图像

opencv-python 缺口识别

一、cv函数

10年积累的成都网站设计、成都网站制作经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有西乌珠穆沁免费网站建设让你可以放心的选择与我们合作。

1、imread:读取图片

imread(image_path, flag):

 images_path:图片路径,找不到不报错

flag:

1/cv2.IMREAD_COLOR:彩色图片,图片透明性会被忽略,默认参数

0/cv2.IMREAD_GRAYSCALE:灰色图片

-1/cv2.IMREAD_UNCHANGED:包括其alpha通道

2、imwrite

imwrite(img_path_name,img)

img_path_name:保存的文件名

img:文件对象

3、cvtColor

cvtColor(img,code)

img: 图像对象

code:

cv2.COLOR_RGB2GRAY: RGB转换到灰度模式

cv2.COLOR_RGB2HSV: RGB转换到HSV模式(hue,saturation,Value)

4、matchTemplate

matchTemplate(img_path, bg_path, cv2.TM_CCOEFF_NORMED)

img_path:对比图片

bg_path:背景图片

cv2.TM_CCOEFF_NORMED

```

# encoding=utf8

import cv2

import numpyas np

def show(name):

cv2.imshow('Show', name)

cv2.waitKey(0)

cv2.destroyAllWindows()

def main():

otemp ='./images/tb.png'

oblk ='./images/bg.jpg'

target = cv2.imread(otemp, 0)

template = cv2.imread(oblk, 0)# 读取到两个图片,进行灰值化处理

w, h = target.shape[::-1]

aa = target.shape

print(aa)

print(w, h)

temp ='./images/temp.jpg'

targ ='./images/targ.jpg'

cv2.imwrite(temp, template)

cv2.imwrite(targ, target)# 处理后进行保存

target = cv2.imread(targ)

target = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)# 转化到灰度

target =abs(255 - target)# 返回绝对值

cv2.imwrite(targ, target)# 重新写入

target = cv2.imread(targ)

template = cv2.imread(temp)

result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)# 进行匹配

x, y = np.unravel_index(result.argmax(), result.shape)# 通过np转化为数值,就是坐标

print(y, x)

# 展示圈出来的区域

cv2.rectangle(template, (y, x), (y + w, x + h), (7, 249, 151), 2)

show(template)

return y, x

if __name__ =='__main__':

a, b = main()

```

Python如何图像识别?

1. 简介。

图像处理是一门应用非常广的技术,而拥有非常丰富第三方扩展库的 Python 当然不会错过这一门盛宴。PIL (Python Imaging Library)是 Python 中最常用的图像处理库,目前版本为 1.1.7,我们可以 在这里 下载学习和查找资料。

Image 类是 PIL 库中一个非常重要的类,通过这个类来创建实例可以有直接载入图像文件,读取处理过的图像和通过抓取的方法得到的图像这三种方法。

2. 使用。

导入 Image 模块。然后通过 Image 类中的 open 方法即可载入一个图像文件。如果载入文件失败,则会引起一个 IOError ;若无返回错误,则 open 函数返回一个 Image 对象。现在,我们可以通过一些对象属性来检查文件内容,即:

1 import Image

2   im = Image.open("j.jpg")

3   print im.format, im.size, im.mode

4 JPEG (440, 330) RGB

这里有三个属性,我们逐一了解。

format : 识别图像的源格式,如果该文件不是从文件中读取的,则被置为 None 值。

size : 返回的一个元组,有两个元素,其值为象素意义上的宽和高。

mode : RGB(true color image),此外还有,L(luminance),CMTK(pre-press image)。

现在,我们可以使用一些在 Image 类中定义的方法来操作已读取的图像实例。比如,显示最新载入的图像:

1 im.show()

2  

输出原图:

3. 函数概貌。

3.1    Reading and Writing Images : open( infilename ) , save( outfilename )

3.2    Cutting and Pasting and Merging Images :

crop() : 从图像中提取出某个矩形大小的图像。它接收一个四元素的元组作为参数,各元素为(left, upper, right, lower),坐标系统的原点(0, 0)是左上角。

paste() :

merge() :

1 box = (100, 100, 200, 200)

2   region = im.crop(box)

3   region.show()

4   region = region.transpose(Image.ROTATE_180)

5   region.show()

6   im.paste(region, box)

7   im.show()

其效果图为:

旋转一幅图片:

1 def roll(image, delta):

2     "Roll an image sideways"

3

4     xsize, ysize = image.size

5

6     delta = delta % xsize

7     if delta == 0: return image

8

9     part1 = image.crop((0, 0, delta, ysize))

10     part2 = image.crop((delta, 0, xsize, ysize))

11     image.paste(part2, (0, 0, xsize-delta, ysize))

12     image.paste(part1, (xsize-delta, 0, xsize, ysize))

13

14     return image

3.3    几何变换。

3.3.1    简单的几何变换。

1 out = im.resize((128, 128))                     #

2  out = im.rotate(45)                             #逆时针旋转 45 度角。

3  out = im.transpose(Image.FLIP_LEFT_RIGHT)       #左右对换。

4  out = im.transpose(Image.FLIP_TOP_BOTTOM)       #上下对换。

5  out = im.transpose(Image.ROTATE_90)             #旋转 90 度角。

6  out = im.transpose(Image.ROTATE_180)            #旋转 180 度角。

7 out = im.transpose(Image.ROTATE_270)            #旋转 270 度角。

各个调整之后的图像为:

图片1:

图片2:

图片3:

图片4:

3.3.2    色彩空间变换。

convert() : 该函数可以用来将图像转换为不同色彩模式。

3.3.3    图像增强。

Filters : 在 ImageFilter 模块中可以使用 filter 函数来使用模块中一系列预定义的增强滤镜。

1 import ImageFilter

2 imfilter = im.filter(ImageFilter.DETAIL)

3 imfilter.show()

3.4    序列图像。

即我们常见到的动态图,最常见的后缀为 .gif ,另外还有 FLI / FLC 。PIL 库对这种动画格式图也提供了一些基本的支持。当我们打开这类图像文件时,PIL 自动载入图像的第一帧。我们可以使用 seek 和 tell 方法在各帧之间移动。

1 import Image

2 im.seek(1)        # skip to the second frame

3

4 try:

5     while 1:

6         im.seek( im.tell() + 1)

7         # do something to im

8 except EOFError:

9     pass

3.5    更多关于图像文件的读取。

最基本的方式:im = Image.open("filename")

类文件读取:fp = open("filename", "rb"); im = Image.open(fp)

字符串数据读取:import StringIO; im = Image.open(StringIO.StringIO(buffer))

从归档文件读取:import TarIO; fp = TarIo.TarIO("Image.tar", "Image/test/lena.ppm"); im = Image.open(fp)

基本的 PIL 目前就练习到这里。其他函数的功能可点击 这里 进一步阅读。

如何用Python和深度神经网络寻找相似图像

代码

首先,读入TuriCreate软件包

import turicreate as tc

我们指定图像所在的文件夹image,让TuriCreate读取所有的图像文件,并且存储到data数据框

data = tc.image_analysis.load_images('./image/')

我们来看看,data数据框的内容:

data

data包含两列信息,第一列是图片的地址,第二列是图片的长宽描述。

下面我们要求TuriCreate给数据框中每一行添加一个行号。这将作为图片的标记,方便后面查找图片时使用,并输出查看data。

data = data.add_row_number()

data

下面,是重头戏。我们让TuriCreate根据输入的图片集合,建立图像相似度判别模型。

model = tc.image_similarity.create(data)

这个语句执行起来,可能需要一些时间。如果你是第一次使用TuriCreate,它可能还需要从网上下载一些数据。请耐心等待。

经过或长或短的等待,模型已经成功建立。

下面,我们来尝试给模型一张图片,让TuriCreate帮我们从目前的图片集合里,挑出最为相似的10张来。

为了方便,我们就选择第一张图片作为查询输入。

我们利用show()函数展示一下这张图片。

tc.Image(data[0]['path']).show()

下面我们来查询,我们让模型寻找出与这张图片最相似的10张。

similar_images = model.query(data[0:1], k=10)

我们把结果存储在了similar_images变量里面,下面我们来看看其中都有哪些图片。

similar_images

返回的结果一共有10行。跟我们的要求一致。

每一行数据,包含4列。分别是:

查询图片的标记

获得结果的标记

结果图片与查询图片的距离

结果图片与查询图片近似程度排序值

有了这些信息,我们就可以查看到底哪些图片与输入查询图片最为相似了。

注意其中的第一张结果图片,其实就是我们的输入图片本身。考虑它没有意义。

我们提取全部结果图片的标记(索引)值,忽略掉第一张(自身)。

similar_image_index = similar_images['reference_label'][1:]

把上面9张图片的标记在所有图片的索引列表中过滤出来:

filtered_index = data['id'].apply(lambda x : x in similar_image_index)

filtered_index

验证完毕以后,请执行以下语句。我们再次调用TuriCreate的explore()函数,展现相似度查询结果图片。

data[filtered_index].explore()


网页名称:python检测图片函数 python做函数图像
网站地址:http://chengdu.cdxwcx.cn/article/hehijd.html