本节内容是递归算法系列之一:斐波那契数列递归求解,主要介绍了斐波那契数列的定义,然后用递归的实现思想分析了一下斐波那契数列,最后给出了基于 Java 代码应用递归思想实现斐波那契数列的代码实现及简单讲解。
成都一家集口碑和实力的网站建设服务商,拥有专业的企业建站团队和靠谱的建站技术,十余年企业及个人网站建设经验 ,为成都超过千家客户提供网页设计制作,网站开发,企业网站制作建设等服务,包括成都营销型网站建设,高端网站设计,同时也为不同行业的客户提供成都网站建设、做网站的服务,包括成都电商型网站制作建设,装修行业网站制作建设,传统机械行业网站建设,传统农业行业网站制作建设。在成都做网站,选网站制作建设服务商就选创新互联公司。
斐波那契数列(Fibonacci sequence),也称之为黄金分割数列,由意大利数学家列昂纳多・斐波那契(Leonardo Fibonacci)提出。斐波那契数列指的是这样的一个数列:1、1、2、3、5、8、13、21、34、……,这个数列从第 3 项开始,每一项都等于前面两项之和。在数学上,斐波那契数列可以被递推的方法定义如下:
斐波那契数列是数学上面一个经典的例子,并且在日常生活中有很多应用,他还与黄金分割有着密不可分的联系,而且当 n 趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割值 0.618。
在这一节中,我们就需要利用递归的思想去求解斐波那契数列,当给出一个斐波那契中第几项的数字,然后求解出对应的斐波那契数值。在之前,我们已经定义了递归算法的相关概念,并且明确了需要应用递归时候的三要素:
接下来,我们将利用递归的知识来解决斐波那契数列问题,明确在斐波那契数列求解问题中的递归三要素分别是什么。
例如,当我们求解斐波那契数列中的 F (5) 时,按照定义,我们有:
在说明斐波那契数列的递归描述之后,我们看看如何用 Java 代码来实现对斐波那契数列的计算。
运行结果如下:
代码中的第 4 行至第 8 行分别调用斐波那契数列计算函数,计算出斐波那契数列中对应 n=1,2,3,4,5 时斐波那契数列的取值,进行结果比较,判断斐波那契数列程序实现是否正确。代码中的第 12 行至第 20 行是斐波那契数列应用递归方法进行斐波那契数列的计算,按照递归的三要素进行计算处理。
本节主要介绍了用递归思想求解斐波那契数列,在学完本节课程之后,我们了解到了什么是斐波那契数列,并且将递归算法在斐波那契数列中进行了实际应用,需要掌握斐波那契数列的递归求解方法,并自己可以实现相关的代码实现,并清楚里面的每一步逻辑。
算到第 25 项,就超出 16 位二进制数了。
需要用到 32 位数的运算方法。
楼主提供的这些程序,基本都不能用了。
必须重新编写程序。
程序已经编好,输出如下:
……
28: 0514229
29: 0832040
30: 1346269
;刚刚写好,呵呵,本人测试通过了,希望对您有帮助,为了方便你看,我加了些注释,有问题可以问我...
ASSUME CS:CODE,DS:DATA
DATA SEGMENT
BUFF DB 10
DB ?
DB 10 DUP(?)
RESULT DW ?
RESULT_SHOW DB 10 DUP(?)
DATA ENDS
CODE SEGMENT
START:
MOV AX,DATA
MOV DS,AX
LEA DX,BUFF
MOV AH,0AH
INT 21H
MOV DI,0
L0: ;统计一共有多少个数字组成
CMP BYTE PTR DS:[DI+2],0DH
JZ GO
INC DI
JMP L0
GO: ;计算第n个斐波那契数,把数字字符串转换为十进制数
MOV BL,10
MOV AX,1
MOV SI,DI ;为后面判断输入的是不是只输入一个数有用
MOV CX,DI
L2: PUSH AX
SUB BYTE PTR DS:[DI+1],30H
MUL BYTE PTR DS:[DI+1]
ADD RESULT,AX
POP AX
MUL BL
DEC DI
LOOP L2
;分两种情况:1.输入的是1;2.输入的不是1
CMP SI,1
JNZ L7
CMP BYTE PTR RESULT,1
JNZ L7
MOV AX,RESULT
JZ L4
L7: MOV AX,1
MOV BX,0
MOV CX,RESULT
DEC CX
L3: ;第n个斐波那契数存放到AX中
PUSH AX
ADD AX,BX
POP BX
LOOP L3
L4:
;显示这个斐波那契数
MOV DX,0
LEA SI,RESULT_SHOW
MOV DI,0 ;利用DI来累计一共有多少个数字
L5:
MOV CX,10
CALL DIVDW
ADD CL,30H
MOV DS:[SI],CL
CMP AX,0
JZ L6
INC SI
INC DI
JMP L5
L6:
MOV DL,DS:[SI]
MOV AH,2
INT 21H
CMP DI,0
JZ OK
DEC SI
DEC DI
JMP L6
OK:
MOV AX,4C00H
INT 21H
;参数: (AX)=DWORD型低16位数据
; (DX)=DWORD型高16位数据
; (CX)=除数
;返回: (DX)=结果的高16位,(AX)=结果的低16位
; (CX)=余数
;32位除16位,可以防止溢出!
DIVDW: ;子程序定义开始,功能是分离各个数字出来
PUSH AX
MOV AX,DX
MOV DX,0
DIV CX
MOV BX,AX
POP AX
DIV CX
MOV CX,DX
MOV DX,BX
RET ;子程序定义结束
CODE ENDS
END START
给定一个正整数n计算出对应斐波那契数列对应的值
说明:
用mackbookpro i7 2.7GHZ笔记本进行测试,结果如下:
备注: 当n=80时,由于测试等待时间过长,强制中断了执行。
从测试结果看出,当n逐渐增大,递归方式计算斐波拉契数列的时间复杂性急剧增加。当n值较大时可以考虑用循环方式代替。
类似的方式也可以用于,求阶乘、遍历目录、汉诺塔等问题的解决。在后期的文章中,我将这些内容进行补充,敬请期待,谢谢。
这么写效率很低,没有剪枝,存在大量的重复计算。
反正你测试用例是有限的,那我骗过你的测试用例就行了啊;)