cos余弦函数公式:
创新互联主营长海网站建设的网络公司,主营网站建设方案,成都app开发,长海h5重庆小程序开发公司搭建,长海网站营销推广欢迎长海等地区企业咨询
cos A=(b²+c²-a²)/2bc。
余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
cos公式的其他资料:
它是周期函数,其最小正周期为2π。在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。
利用余弦定理,可以解决以下两类有关三角形的问题:
(1)已知三边,求三个角。
(2)已知两边和它们的夹角,求第三边和其他两个角。
比如你在a.py的文件中定义了一个test(x,y)函数,在shell中调用的时候from a import testtest(x,y)
这篇文章主要介绍了Python中计算三角函数之cos()方法的使用简介,是Python入门的基础知识,需要的朋友可以参考下
cos()方法返回x弧度的余弦值。
语法
以下是cos()方法的语法:
cos(x)
注意:此函数是无法直接访问的,所以我们需要导入math模块,然后需要用math的静态对象来调用这个函数。
参数
x
--
这必须是一个数值
返回值
此方法返回-1
到
1之间的数值,它表示角度的余弦值
例子
下面的例子展示cos()方法的使用
?
1
2
3
4
5
6
7
8#!/usr/bin/python
import
math
"cos(3)
:
",
math.cos(3)
"cos(-3)
:
",
math.cos(-3)
"cos(0)
:
",
math.cos(0)
"cos(math.pi)
:
",
math.cos(math.pi)
"cos(2*math.pi)
:
",
math.cos(2*math.pi)
当我们运行上面的程序,它会产生以下结果:
?
1
2
3
4
5cos(3)
:
-0.9899924966
cos(-3)
:
-0.9899924966
cos(0)
:
1.0
cos(math.pi)
:
-1.0
cos(2*math.pi)
:
1.0
在直角三角形中,一个锐角的余弦=它的邻边 / 斜边,一个锐角的正弦=它的对边 / 斜边
比如一个三角形ABC中,∠C=90°.则AB叫做斜边,AC叫做∠A的邻边,BC叫做∠A的对边.所以,cosA=AC/AB,sinA=BC/AB.同理cosB=BC/AB,sinB=AC/AB
余弦定理是针对任意三角形的.比如三角形ABC中,如果∠A,∠B,∠C的对边分别用a、b、c来表示那么就有如下关系:
a²=b²+c²-2bccosA
b²=a²+c²-2accosB
c²=a²+b²-2abcosC
扩展资料:
判定定理一 两根判别法:
若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取
减号的值。
①若m(c1,c2)=2,则有两解;
②若m(c1,c2)=1,则有一解;
③若m(c1,c2)=0,则有零解(即无解)。
注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。
参考资料来源:百度百科—余弦定理
用python怎样画出如题所示的正余弦函数图像? 如此编写代码,使其中两个轴、图例、刻度,大小,LaTex公式等要素与原图一致,需要用到的代码如下,没有缩进:
#-*-codeing:utf-8;-*-
from matplotlib import pyplot as plt
import numpy as np
a=np.linspace(0,360,980)
b=np.sin(a/180*np.pi)
c=np.cos(a/180*np.pi)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlim([0, 360])
ax.plot(a,b,label=r"$y=\sin(\theta)$")
ax.plot(a,c,label=r"$y=\cos(\theta)$")
ax.grid(True)
ax.set_ylabel(r"$y$")
ax.set_xlabel(r"$\theta$")
plt.xticks(np.arange(0,360+1,45))
plt.title("Sine Cosine Waves")
plt.legend()
plt.savefig("SinCosWaveDegFont.jpg")
plt.show()
代码运行show的窗口图
代码的截图
代码输出的文件的图
余弦定理表达式1:
同理,也可描述为:
余弦定理表达式2:
余弦定理表达式3(角元形式)
扩展资料:
余弦定理证明:
1、平面三角形证法
在△ABC中,BC=a,AC=b,AB=c,作AD⊥BC于D,则AD=c*sinB,DC=a-BD=a-c*cosB
在Rt△ACD中,
b²=AD²+DC²=(c*sinB)²+(a-c*cosB)²
=c²sin²B+a²-2ac*cosB+c²cos²B
=c²(sin²B+cos²B)+a²-2ac*cosB
=c²+a²-2ac*cosB
2、平面向量证法
有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)
∴c·c=(a+b)·(a+b)
∴c²=a·a+2a·b+b·b∴c²=a²+b²+2|a||b|cos(π-θ)
又∵cos(π-θ)=-cosθ(诱导公式)
∴c²=a²+b²-2|a||b|cosθ
此即c²=a²+b²-2abcosC
即cosC=(a2+b2-c2)/2*a*b