成都网站建设设计

将想法与焦点和您一起共享

python的聚合函数,python集合的方法

python实现聚合函数功能

#encoding=utf-8

创新互联建站是一家专业从事做网站、成都网站建设、网页设计的品牌网络公司。如今是成都地区具影响力的网站设计公司,作为专业的成都网站建设公司,创新互联建站依托强大的技术实力、以及多年的网站运营经验,为您提供专业的成都网站建设、营销型网站建设及网站设计开发服务!

def getRows():

names = ["A", "B"]

rows = [

[1, 'm'],

[2, 'm'],

[3, 'q'],

[3, 'q'],

[2, 'q'],

[1, 's'],

[4, 's'],

[2, 's'],

[1, 's'],

[3, 'm']

]

rs = []

for row in rows:

rs.append(dict(zip(names, row)))

return rs

def count():

rs = getRows()

# 取所有B=m的行

rs = [r for r in rs if r["B"] == 'm']

rs = sorted(rs, key=lambda r: r["B"])

# 计算数量

result = {}

for r in rs:

if r["A"] in result:

result[r["A"]] += 1

else:

result[r["A"]] = 1

return result

print count()

请问怎么学习Python?

这里整理了一份Python开发的学习路线,可按照这份大纲来安排学习计划~

第一阶段:专业核心基础

阶段目标:

1. 熟练掌握Python的开发环境与编程核心知识

2. 熟练运用Python面向对象知识进行程序开发

3. 对Python的核心库和组件有深入理解

4. 熟练应用SQL语句进行数据库常用操作

5. 熟练运用Linux操作系统命令及环境配置

6. 熟练使用MySQL,掌握数据库高级操作

7. 能综合运用所学知识完成项目

知识点:

Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux操作系统。

1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。

2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。

3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。

4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为Python后台开发打下坚实基础。

5、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。

第二阶段:PythonWEB开发

阶段目标:

1. 熟练掌握Web前端开发技术,HTML,CSS,JavaScript及前端框架

2. 深入理解Web系统中的前后端交互过程与通信协议

3. 熟练运用Web前端和Django和Flask等主流框架完成Web系统开发

4. 深入理解网络协议,分布式,PDBC,AJAX,JSON等知识

5. 能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理

6. 使用Web开发框架实现贯穿项目

知识点:

Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。

1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。

2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。

3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。

4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。

第三阶段:爬虫与数据分析

阶段目标:

1. 熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析

2. 熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取

3. 熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理

4. 熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取

5. 熟练掌握数据分析相关概念及工作流程

6. 熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用

7. 熟练掌握数据清洗、整理、格式转换、数据分析报告编写

8. 能够综合利用爬虫爬取豆瓣网电影评论数据并完成数据分析全流程项目实战

知识点:

网络爬虫开发、数据分析之Numpy、数据分析之Pandas。

1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,Beautifulfoup,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。

2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见操作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等操作。

3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和操作方法。

4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。

第四阶段:机器学习与人工智能

阶段目标:

1. 理解机器学习相关的基本概念及系统处理流程

2. 能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题

3. 熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等

4. 掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等

5. 掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目

知识点:

1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。

2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflow playround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。

Python聚合函数使用

#encoding=utf-8

def getRows():

names = ["A", "B"]

rows = [

[1, 'm'],

[2, 'm'],

[3, 'q'],

[3, 'q'],

[2, 'q'],

[1, 's'],

[4, 's'],

[2, 's'],

[1, 's'],

[3, 'm']

]

rs = []

for row in rows:

rs.append(dict(zip(names, row)))

return rs

def count():

rs = getRows()

# 取所有B=m的行

rs = [r for r in rs if r["B"] == 'm']

rs = sorted(rs, key=lambda r: r["B"])

# 计算数量

result = {}

for r in rs:

if r["A"] in result:

result[r["A"]] += 1

else:

result[r["A"]] = 1

return result

print count()

Python分组

前言分组原理

核心:

1.不论分组键是数组、列表、字典、Series、函数,只要其与待分组变量的轴长度一致都可以传入groupby进行分组。

2.默认axis=0按行分组,可指定axis=1对列分组。

对数据进行分组操作的过程可以概括为:split-apply-combine三步:

1.按照键值(key)或者分组变量将数据分组。

2.对于每组应用我们的函数,这一步非常灵活,可以是python自带函数,可以是我们自己编写的函数。

3.将函数计算后的结果聚合。

1 分组模式及其对象

1.1 分组的一般模式

三个要素:分组依据、数据来源、操作及其返回结果

df.groupby(分组依据)[数据来源].使用操作

1.2 分组依据的本质

1.3Groupby 对象

通过 ngroups 属性,可以访问分为了多少组:

通过 groups 属性,可以返回从 组名映射到 组索引列表的字典:

当 size 作为 DataFrame 的属性时,返回的是表长乘以表宽的大小,但在 groupby 对象上表示统计每个组的 元素个数:

通过 get_group 方法可以直接获取所在组对应的行,此时必须知道组的具体名字:

1.4 分组的三大操作

分组的三大操作:聚合、变换和过滤

2.聚合函数

2.1内置聚合函数

包括如下函数: max/min/mean/median/count/all/any/idxmax/idxmin/mad/nunique/skew/quantile/sum/std/var/sem/size/prod

2.2agg 方法

【a】使用多个函数

当使用多个聚合函数时,需要用列表的形式把内置聚合函数的对应的字符串传入,先前提到的所有字符串都是合法的。

【b】对特定的列使用特定的聚合函数

对于方法和列的特殊对应,可以通过构造字典传入 agg 中实现,其中字典以列名为键,以聚合字符串或字符串列表为值。

【c】使用自定义函数

在 agg 中可以使用具体的自定义函数,需要注意传入函数的参数是之前数据源中的列,逐列进行计算

【d】聚合结果重命名 如果想要对结果进行重命名,只需要将上述函数的位置改写成元组,元组的第一个元素为新的名字,第二个位置为原来的函数,包括聚合字符串和自定义函数

3 变换和过滤

3.1 变换函数与 transform 方法

变 换 函 数 的 返 回 值 为 同 长 度 的 序 列, 最 常 用 的 内 置 变 换 函 数 是 累 计 函 数:cum- count/cumsum/cumprod/cummax/cummin ,它们的使用方式和聚合函数类似,只不过完成的是组内 累计操作。

3.2 组索引与过滤

过滤在分组中是对于组的过滤,而索引是对于行的过滤

组过滤作为行过滤的推广,指的是如果对一个组的全体所在行进行统计的结果返回 True 则会被保留,False 则该组会被过滤,最后把所有未被过滤的组其对应的所在行拼接起来作为 DataFrame 返回。

在 groupby 对象中,定义了 filter 方法进行组的筛选,其中自定义函数的输入参数为数据源构成的 DataFrame 本身,在之前例子中定义的 groupby 对象中,传入的就是 df[['Height', 'Weight']] ,因此所有表方法和属性 都可以在自定义函数中相应地使用,同时只需保证自定义函数的返回为布尔值即可。

4 跨列分组

4.1 apply 的引入

4.2 apply 的使用

在设计上,apply 的自定义函数传入参数与 filter 完全一致,只不过后者只允许返回布尔值

【a】标量情况:结果得到的是 Series ,索引与 agg 的结果一致

【b】Series 情况:得到的是 DataFrame ,行索引与标量情况一致,列索引为 Series 的索引

【c】DataFrame 情况:得到的是 DataFrame ,行索引最内层在每个组原先 agg 的结果索引上,再加一层返 回的 DataFrame 行索引,同时分组结果 DataFrame 的列索引和返回的 DataFrame 列索引一致

利用Python进行数据分析(9)-重采样resample和频率转换

Python-for-data-重新采样和频率转换

重新采样指的是将时间序列从一个频率转换到另一个频率的过程。

但是也并不是所有的采样方式都是属于上面的两种

pandas中使用resample方法来实现频率转换,下面是resample方法的参数详解:

将数据聚合到一个规则的低频上,例如将时间转换为每个月,"M"或者"BM",将数据分成一个月的时间间隔。

每个间隔是半闭合的,一个数据只能属于一个时间间隔。时间间隔的并集必须是整个时间帧

默认情况下,左箱体边界是包含的。00:00的值是00:00到00:05间隔内的值

产生的时间序列按照每个箱体左边的时间戳被标记。

传递span class="mark"label="right"/span可以使用右箱体边界标记时间序列

向loffset参数传递字符串或者日期偏置

在金融数据中,为每个数据桶计算4个值是常见的问题:

通过span class="girk"ohlc聚合函数/span能够得到四种聚合值列的DF数据

低频转到高频的时候会形成缺失值

ffill() :使用前面的值填充, limit 限制填充的次数

python函数组求各个极值的问题

你把遍历的结果放到一个列表里面,便利结束后求列表里的最大值就行了

ls=[]

for i in range(xxx):

ls.append(func)

max_value = max(ls)


网站题目:python的聚合函数,python集合的方法
当前路径:http://chengdu.cdxwcx.cn/article/hcoccj.html