成都网站建设设计

将想法与焦点和您一起共享

opencv中python如何统计及绘制直方图-创新互联

这篇文章给大家分享的是有关opencv中python如何统计及绘制直方图的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

站在用户的角度思考问题,与客户深入沟通,找到习水网站设计与习水网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站设计、成都网站建设、企业官网、英文网站、手机端网站、网站推广、主机域名、网络空间、企业邮箱。业务覆盖习水地区。

灰度直方图概括了图像的灰度级信息,简单的来说就是每个灰度级图像中的像素个数以及占有率,创建直方图无外乎两个步骤,统计直方图数据,再用绘图库绘制直方图。

统计直方图数据

首先要稍微理解一些与函数相关的术语,方便理解其在python3库中的应用和处理

BINS: 在上面的直方图当中,如果像素值是0到255,则需要256个值来显示直 方图。但是,如果不需要知道每个像素值的像素数目,只想知道两个像素值之间的像素点数目怎么办?例如,想知道像素值在0到15之间的像素点数目,然后是16到31。。。240到255。可以将256个值分成16份,每份计算综合。每个分成的小组就是一个BIN(箱)。在opencv中使用histSize表示BINS。

DIMS: 数据的参数数目。当前例子当中,对收集到的数据只考虑灰度值,所以该值为1。

RANGE: 灰度值范围,通常是[0,256],也就是灰度所有的取值范围。

统计直方图同样有两种方法,使用opencv统计直方图,函数如下:

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

该函数的参数在了解以上术语加上自己百度后可以简单应用

使用numpy统计函数,主要应用 numpy.histogram() 函数(还有 np.bincount() ,还未尝试,读者可以自己尝试,大抵使用方法相同)

hist,bins = np.histogram(img.ravel(),256,[0,256])

opencv处理速度优于numpy,同时对于学习opencv的同学来说,多运用cv的处理方法无疑更利于学习。

绘制直方图

绘制直方图一般使用Matplotlib绘制 ,这里要提一下matplotlib的 matplotlib.pyplot.hist() 函数,该函数可以直接统计绘制中方图。统计函数为 calcHist()np.histogram()
这是处理的样图

opencv中python如何统计及绘制直方图

下面是代码实现

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('/home/yc/Pictures/cat.jpg',0)
plt.hist(img.ravel(),256,[0,256]);
plt.show()

效果

opencv中python如何统计及绘制直方图

灰度直方图

当然,在颜色图像检索之类用法时,我们需要的是BGR直方图,原理类似,统计时使用 cv2.calcHist()

函数

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('/home/yc/Pictures/cat.jpg',1)
color = ('b','g','r')
for i,col in enumerate(color):
  histr = cv2.calcHist([img],[i],None,[256],[0,256])
  plt.plot(histr,color = col)
  plt.xlim([0,256])
plt.show()

效果如下

opencv中python如何统计及绘制直方图

BGR直方图

此外,再介绍一种很原始的计算灰度直方图的方法……感觉代码注释的很完整,相信读者也可以看懂

import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt

def main():
  img=cv2.imread('/home/yc/Pictures/cat.jpg',0)
  #得到计算灰度直方图的值
  xy=xygray(img)  

  #画出灰度直方图
  x_range=range(256)
  plt.plot(x_range,xy,"r",linewidth=2,c='black')
  #设置坐标轴的范围
  y_maxValue=np.max(xy)
  plt.axis([0,255,0,y_maxValue])
  #设置坐标轴的标签
  plt.xlabel('gray Level')
  plt.ylabel("number of pixels")
  plt.show()

def xygray(img):
  #得到高和宽
  rows,cols=img.shape
  #存储灰度直方图
  xy=np.zeros([256],np.uint64)
  for r in range(rows):
    for c in range(cols):
      xy[img[r][c]] += 1
  #返回一维ndarry
  return xy

main()

效果如下

opencv中python如何统计及绘制直方图

灰度直方图

感谢各位的阅读!关于“opencv中python如何统计及绘制直方图”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!


网页题目:opencv中python如何统计及绘制直方图-创新互联
分享路径:http://chengdu.cdxwcx.cn/article/gjddp.html