成都网站建设设计

将想法与焦点和您一起共享

SpringCloud服务的平滑上下线怎么实现

这篇文章主要介绍“SpringCloud服务的平滑上下线怎么实现”,在日常操作中,相信很多人在SpringCloud服务的平滑上下线怎么实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”SpringCloud服务的平滑上下线怎么实现”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

公司主营业务:成都网站制作、成都网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联公司推出扎赉特免费做网站回馈大家。

整体来说,SpringCloud功能齐全,经过一段时间的踩坑后使用起来还是非常舒服的。

我们的微服务,大体集成了以下内容。

SpringCloud服务的平滑上下线怎么实现

嗯,一个庞大的生态

问题

那么问题来了,SpringCloud到注册中心的注册是通过 Rest 接口调用的。它不能像 ZooKeeper那样,有问题节点反馈及时生效。也不能像 redis 那么快的去轮训,太娇贵怕轮坏了。如下图:

SpringCloud服务的平滑上下线怎么实现

有三个要求:

1)ServiceA下线一台实例后,Zuul网关的调用不能失败

2)ServiceB下线一台实例后,ServiceA的Feign调用不能失败

3)服务上线下线,Eureka服务能够快速感知

说白了就一件事,怎样尽量缩短服务下线后Zuul和其他被依赖服务的发现时间,并在这段时间内保证请求不失败。

解决时间问题

影响因子

1) Eureka的两层缓存问题 (这是什么鬼

EurekaServer默认有两个缓存,一个是ReadWriteMap,另一个是ReadOnlyMap。有服务提供者注册服务或者维持心跳时时,会修改ReadWriteMap。当有服务调用者查询服务实例列表时,默认会从ReadOnlyMap读取(这个在原生Eureka可以配置,SpringCloud Eureka中不能配置,一定会启用ReadOnlyMap读取),这样可以减少ReadWriteMap读写锁的争用,增大吞吐量。EurekaServer定时把数据从ReadWriteMap更新到ReadOnlyMap中

2) 心跳时间

服务提供者注册服务后,会定时心跳。这个根据服务提供者的Eureka配置中的服务刷新时间决定。还有个配置是服务过期时间,这个配置在服务提供者配置但是在EurekaServer使用了,但是默认配置EurekaServer不会启用这个字段。需要配置好EurekaServer的扫描失效时间,才会启用EurekaServer的主动失效机制。在这个机制启用下:每个服务提供者会发送自己服务过期时间上去,EurekaServer会定时检查每个服务过期时间和上次心跳时间,如果在过期时间内没有收到过任何一次心跳,同时没有处于保护模式下,则会将这个实例从ReadWriteMap中去掉

3)调用者服务从Eureka拉列表的轮训间隔

4) Ribbon缓存

解决方式

1) 禁用Eureka的ReadOnlyMap缓存 (Eureka端)

eureka.server.use-read-only-response-cache: false

2) 启用主动失效,并且每次主动失效检测间隔为3s (Eureka端)

eureka.server.eviction-interval-timer-in-ms: 3000

像 eureka.server.responseCacheUpdateInvervalMs 和 eureka.server.responseCacheAutoExpirationInSeconds 在启用了主动失效后其实没什么用了。默认的180s真够把人给急疯的。

3) 服务过期时间 (服务提供方)

eureka.instance.lease-expiration-duration-in-seconds: 15

超过这个时间没有接收到心跳EurekaServer就会将这个实例剔除。EurekaServer一定要设置eureka.server.eviction-interval-timer-in-ms否则这个配置无效,这个配置一般为服务刷新时间配置的三倍。默认90s!

4) 服务刷新时间配置,每隔这个时间会主动心跳一次 (服务提供方)

eureka.instance.lease-renewal-interval-in-seconds: 5

默认30s

5) 拉服务列表时间间隔 (客户端)

eureka.client.registryFetchIntervalSeconds: 5

默认30s

6) ribbon刷新时间 (客户端)

ribbon.ServerListRefreshInterval: 5000

ribbon竟然也有缓存,默认30s

这些超时时间相互影响,竟然三个地方都需要配置,一不小心就会出现服务不下线,服务不上线的囧境。不得不说SpringCloud的这套默认参数简直就是在搞笑。

重试

那么一台服务器下线,最长的不可用时间是多少呢?(即请求会落到下线的服务器上,请求失败)。赶的巧的话,这个基本时间就是 eureka.client.registryFetchIntervalSeconds+ribbon.ServerListRefreshInterval ,大约是 8 秒的时间。如果算上服务端主动失效的时间,这个时间会增加到 11秒 。

如果你只有两个实例,极端情况下服务上线的发现时间也需要11秒,那就是22秒的时间。

理想情况下,在这11秒之间,请求是失败的。加入你的QPS是1000,部署了四个节点,那么在11秒中失败的请求数量会是 1000 / 4 * 11 = 2750 ,这是不可接受的。所以我们要引入重试机制。

SpringCloud引入重试还是比较简单的。但不是配置一下就可以的,既然用了重试,那么就还需要控制超时。可以按照以下的步骤:

1) 引入pom (千万别忘了哦)


 org.springframework.retry
 spring-retry

2) 加入配置

ribbon.OkToRetryOnAllOperations:true 
#(是否所有操作都重试,若false则仅get请求重试)
ribbon.MaxAutoRetriesNextServer:3 
#(重试负载均衡其他实例最大重试次数,不含首次实例)
ribbon.MaxAutoRetries:1
#(同一实例最大重试次数,不含首次调用)
ribbon.ReadTimeout:30000
ribbon.ConnectTimeout:3000
ribbon.retryableStatusCodes:404,500,503
#(那些状态进行重试)
spring.cloud.loadbalancer.retry.enable:true
# (重试开关)

发布系统

OK,机制已经解释清楚,但是实践起来还是很繁杂的,让人焦躁。比如有一个服务有两个实例,我要一台一台的去发布,在发布第二台之前,起码要等上11秒。如果手速太快,那就是灾难。所以一个配套的发布系统是必要的。

首先可以通过rest请求去请求Eureka,主动去隔离一台实例,多了这一步,可以减少至少3秒服务不可用的时间(还是比较划算的)。

然后通过打包工具打包,推包。依次上线替换。

市面上没有这样的持续集成哦你工具,那么发布系统就需要定制,这也是一部分工作量。

到此,关于“SpringCloud服务的平滑上下线怎么实现”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


网站题目:SpringCloud服务的平滑上下线怎么实现
文章路径:http://chengdu.cdxwcx.cn/article/gddjci.html