成都网站建设设计

将想法与焦点和您一起共享

怎么用Python爬取微信好友数据

这篇文章主要介绍了怎么用Python爬取微信好友数据的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇怎么用Python爬取微信好友数据文章都会有所收获,下面我们一起来看看吧。

创新互联建站主营博罗网站建设的网络公司,主营网站建设方案,app软件开发公司,博罗h5微信小程序定制开发搭建,博罗网站营销推广欢迎博罗等地区企业咨询

简单介绍下本文中使用到的第三方模块:

itchat:微信网页版接口封装Python版本,在本文中用以获取微信好友信息。

jieba:结巴分词的 Python 版本,在本文中用以对文本信息进行分词处理。

matplotlib:Python 中图表绘制模块,在本文中用以绘制柱形图和饼图

snownlp:一个 Python 中的中文分词模块,在本文中用以对文本信息进行情感判断。

PIL:Python 中的图像处理模块,在本文中用以对图片进行处理。

numpy:Python中 的数值计算模块,在本文中配合 wordcloud 模块使用。

wordcloud:Python 中的词云模块,在本文中用以绘制词云图片。

TencentYoutuyun:腾讯优图提供的 Python 版本 SDK ,在本文中用以识别人脸及提取图片标签信息。

1. 数据分析

分析微信好友数据的前提是获得好友信息,通过使用 itchat 这个模块,这一切会变得非常简单,我们通过下面两行代码就可以实现:

itchat.auto_login(hotReload = True)
friends = itchat.get_friends(update = True)

同平时登录网页版微信一样,我们使用手机扫描二维码就可以登录,这里返回的friends对象是一个集合,第一个元素是当前用户。所以,在下面的数据分析流程中,我们始终取friends[1:]作为原始输入数据,集合中的每一个元素都是一个字典结构,以我本人为例,可以注意到这里有Sex、City、Province、HeadImgUrl、Signature这四个字段,我们下面的分析就从这四个字段入手:

怎么用Python爬取微信好友数据

2. 好友性别

分析好友性别,我们首先要获得所有好友的性别信息,这里我们将每一个好友信息的Sex字段提取出来,然后分别统计出Male、Female和Unkonw的数目,我们将这三个数值组装到一个列表中,即可使用matplotlib模块绘制出饼图来,其代码实现如下:

def analyseSex(firends):
sexs = list(map(lambda x:x['Sex'],friends[1:]))
 counts = list(map(lambda x:x[1],Counter(sexs).items()))
 labels = ['Unknow','Male','Female']
 colors = ['red','yellowgreen','lightskyblue']
 plt.figure(figsize=(8,5), dpi=80)
 plt.axes(aspect=1)
 plt.pie(counts, #性别统计结果
 labels=labels, #性别展示标签
 colors=colors, #饼图区域配色
 labeldistance = 1.1, #标签距离圆点距离
 autopct = '%3.1f%%', #饼图区域文本格式
 shadow = False, #饼图是否显示阴影
 startangle = 90, #饼图起始角度
 pctdistance = 0.6 #饼图区域文本距离圆点距离
 )
 plt.legend(loc='upper right',)
 plt.title(u'%s的微信好友性别组成' % friends[0]['NickName'])
plt.show()

这里简单解释下这段代码,微信中性别字段的取值有Unkonw、Male和Female三种,其对应的数值分别为0、1、2。通过Collection模块中的Counter()对这三种不同的取值进行统计,其items()方法返回的是一个元组的集合。

该元组的第一维元素表示键,即0、1、2,该元组的第二维元素表示数目,且该元组的集合是排序过的,即其键按照0、1、2 的顺序排列,所以通过map()方法就可以得到这三种不同取值的数目,我们将其传递给matplotlib绘制即可,这三种不同取值各自所占的百分比由matplotlib计算得出。下图是matplotlib绘制的好友性别分布图:

怎么用Python爬取微信好友数据

3. 好友头像

分析好友头像,从两个方面来分析,第一,在这些好友头像中,使用人脸头像的好友比重有多大;第二,从这些好友头像中,可以提取出哪些有价值的关键字。

这里需要根据HeadImgUrl字段下载头像到本地,然后通过腾讯优图提供的人脸识别相关的API接口,检测头像图片中是否存在人脸以及提取图片中的标签。其中,前者是分类汇总,我们使用饼图来呈现结果;后者是对文本进行分析,我们使用词云来呈现结果。关键代码如下所示:

def analyseHeadImage(frineds):
 # Init Path
 basePath = os.path.abspath('.')
baseFolder = basePath + '\HeadImages\'
 if(os.path.exists(baseFolder) == False):
 os.makedirs(baseFolder)
 # Analyse Images
 faceApi = FaceAPI()
use_face = 0
not_use_face = 0
 image_tags = ''
 for index in range(1,len(friends)):
friend = friends[index]
# Save HeadImages
imgFile = baseFolder + '\Image%s.jpg' % str(index)
imgData = itchat.get_head_img(userName = friend['UserName'])
if(os.path.exists(imgFile) == False):
 with open(imgFile,'wb') as file:
file.write(imgData)
# Detect Faces
time.sleep(1)
result = faceApi.detectFace(imgFile)
if result == True:
use_face += 1
else:
not_use_face += 1
# Extract Tags
result = faceApi.extractTags(imgFile)
 image_tags += ','.join(list(map(lambda x:x['tag_name'],result)))
 labels = [u'使用人脸头像',u'不使用人脸头像']
 counts = [use_face,not_use_face]
 colors = ['red','yellowgreen','lightskyblue']
 plt.figure(figsize=(8,5), dpi=80)
 plt.axes(aspect=1)
 plt.pie(counts, #性别统计结果
 labels=labels, #性别展示标签
 colors=colors, #饼图区域配色
 labeldistance = 1.1, #标签距离圆点距离
 autopct = '%3.1f%%', #饼图区域文本格式
 shadow = False, #饼图是否显示阴影
 startangle = 90, #饼图起始角度
 pctdistance = 0.6 #饼图区域文本距离圆点距离
 )
 plt.legend(loc='upper right',)
 plt.title(u'%s的微信好友使用人脸头像情况' % friends[0]['NickName'])
plt.show()
 image_tags = image_tags.encode('iso8859-1').decode('utf-8')
 back_coloring = np.array(Image.open('face.jpg'))
 wordcloud = WordCloud(
font_path='simfang.ttf',
background_color="white",
max_words=1200,
mask=back_coloring,
max_font_size=75,
random_state=45,
width=800,
height=480,
 margin=15
)
 wordcloud.generate(image_tags)
 plt.imshow(wordcloud)
 plt.axis("off")
plt.show()

这里我们会在当前目录新建一个HeadImages目录,用于存储所有好友的头像,然后我们这里会用到一个名为FaceApi类,这个类由腾讯优图的SDK封装而来,这里分别调用了人脸检测和图像标签识别两个API接口,前者会统计”使用人脸头像”和”不使用人脸头像”的好友各自的数目,后者会累加每个头像中提取出来的标签。其分析结果如下图所示:

怎么用Python爬取微信好友数据

可以注意到,在所有微信好友中,约有接近1/4的微信好友使用了人脸头像, 而有接近3/4的微信好友没有人脸头像,这说明在所有微信好友中对”颜值 “有自信的人,仅仅占到好友总数的25%,或者说75%的微信好友行事风格偏低调为主,不喜欢用人脸头像做微信头像。

其次,考虑到腾讯优图并不能真正的识别”人脸”,我们这里对好友头像中的标签再次进行提取,来帮助我们了解微信好友的头像中有哪些关键词,其分析结果如图所示:

怎么用Python爬取微信好友数据

通过词云,我们可以发现:在微信好友中的签名词云中,出现频率相对较高的关键字有:女孩、树木、房屋、文本、截图、卡通、合影、天空、大海。这说明在我的微信好友中,好友选择的微信头像主要有日常、旅游、风景、截图四个来源。

好友选择的微信头像中风格以卡通为主,好友选择的微信头像中常见的要素有天空、大海、房屋、树木。通过观察所有好友头像,我发现在我的微信好友中,使用个人照片作为微信头像的有15人,使用网络图片作为微信头像的有53人,使用动漫图片作为微信头像的有25人,使用合照图片作为微信头像的有3人,使用孩童照片作为微信头像的有5人,使用风景图片作为微信头像的有13人,使用女孩照片作为微信头像的有18人,基本符合图像标签提取的分析结果。

4. 好友签名

分析好友签名,签名是好友信息中最为丰富的文本信息,按照人类惯用的”贴标签”的方法论,签名可以分析出某一个人在某一段时间里状态,就像人开心了会笑、哀伤了会哭,哭和笑两种标签,分别表明了人开心和哀伤的状态。

这里我们对签名做两种处理,第一种是使用结巴分词进行分词后生成词云,目的是了解好友签名中的关键字有哪些,哪一个关键字出现的频率相对较高;第二种是使用SnowNLP分析好友签名中的感情倾向,即好友签名整体上是表现为正面的、负面的还是中立的,各自的比重是多少。这里提取Signature字段即可,其核心代码如下:

def analyseSignature(friends):
 signatures = ''
 emotions = []
 pattern = re.compile("1fd.+")
 for friend in friends:
signature = friend['Signature']
if(signature != None):
 signature = signature.strip().replace('span', '').replace('class', '').replace('emoji', '')
 signature = re.sub(r'1f(d.+)','',signature)
 if(len(signature)>0):
nlp = SnowNLP(signature)
emotions.append(nlp.sentiments)
signatures += ' '.join(jieba.analyse.extract_tags(signature,5))
 with open('signatures.txt','wt',encoding='utf-8') as file:
 file.write(signatures)
 # Sinature WordCloud
 back_coloring = np.array(Image.open('flower.jpg'))
 wordcloud = WordCloud(
font_path='simfang.ttf',
background_color="white",
max_words=1200,
mask=back_coloring,
max_font_size=75,
random_state=45,
width=960,
height=720,
 margin=15
 )
 wordcloud.generate(signatures)
 plt.imshow(wordcloud)
 plt.axis("off")
 plt.show()
 wordcloud.to_file('signatures.jpg')
 # Signature Emotional Judgment
 count_good = len(list(filter(lambda x:x>0.66,emotions)))
 count_normal = len(list(filter(lambda x:x>=0.33 and x<=0.66,emotions)))
 count_bad = len(list(filter(lambda x:x<0.33,emotions)))
 labels = [u'负面消极',u'中性',u'正面积极']
 values = (count_bad,count_normal,count_good)
 plt.rcParams['font.sans-serif'] = ['simHei']
plt.rcParams['axes.unicode_minus'] = False
 plt.xlabel(u'情感判断')
 plt.ylabel(u'频数')
 plt.xticks(range(3),labels)
 plt.legend(loc='upper right',)
 plt.bar(range(3), values, color = 'rgb')
 plt.title(u'%s的微信好友签名信息情感分析' % friends[0]['NickName'])
plt.show()

通过词云,我们可以发现:在微信好友的签名信息中,出现频率相对较高的关键词有:努力、长大、美好、快乐、生活、幸福、人生、远方、时光、散步。

怎么用Python爬取微信好友数据

通过以下柱状图,我们可以发现:在微信好友的签名信息中,正面积极的情感判断约占到55.56%,中立的情感判断约占到32.10%,负面消极的情感判断约占到12.35%。这个结果和我们通过词云展示的结果基本吻合,这说明在微信好友的签名信息中,约有87.66%的签名信息,传达出来都是一种积极向上的态度。

怎么用Python爬取微信好友数据

5. 好友位置

分析好友位置,主要通过提取Province和City这两个字段。Python中的地图可视化主要通过Basemap模块,这个模块需要从国外网站下载地图信息,使用起来非常的不便。

百度的ECharts在前端使用的比较多,虽然社区里提供了pyecharts项目,可我注意到因为政策的改变,目前Echarts不再支持导出地图的功能,所以地图的定制方面目前依然是一个问题,主流的技术方案是配置全国各省市的JSON数据。

这里我使用的是BDP个人版,这是一个零编程的方案,我们通过Python导出一个CSV文件,然后将其上传到BDP中,通过简单拖拽就可以制作可视化地图,简直不能再简单,这里我们仅仅展示生成CSV部分的代码:

def analyseLocation(friends):
 headers = ['NickName','Province','City']
 with open('location.csv','w',encoding='utf-8',newline='',) as csvFile:
writer = csv.DictWriter(csvFile, headers)
writer.writeheader()
for friend in friends[1:]:
 row = {}
 row['NickName'] = friend['NickName']
 row['Province'] = friend['Province']
 row['City'] = friend['City']
writer.writerow(row)

关于“怎么用Python爬取微信好友数据”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“怎么用Python爬取微信好友数据”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注创新互联行业资讯频道。


本文名称:怎么用Python爬取微信好友数据
链接URL:http://chengdu.cdxwcx.cn/article/gchood.html