成都网站建设设计

将想法与焦点和您一起共享

如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据-创新互联

如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

10年积累的网站设计制作、成都网站建设经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有北关免费网站建设让你可以放心的选择与我们合作。

在学习python的时候,一定会遇到网站内容是通过 ajax动态请求、异步刷新生成的json数据 的情况,并且通过python使用之前爬取静态网页内容的方式是不可以实现的,所以这篇文章将要讲述如果在python中爬取ajax动态生成的数据。

这里我们以爬取淘宝评论为例子讲解一下如何去做到的。

步骤一:

获取淘宝评论时,ajax请求链接(url)这里我使用的是Chrome浏览器来完成的。打开淘宝链接,在搜索框中搜索一个商品,比如“鞋子”,这里我们选择第一项商品。

如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据

然后跳转到了一个新的网页中。在这里由于我们需要爬取用户的评论,所以我们点击累计评价。

如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据

然后我们就可以看到用户对该商品的评价了,这时我们在网页中右击选择审查元素(或者直接使用F12打开)并且选中Network选项,如图所示:

如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据

我们在用户评论中,翻到底部 点击下一页或者第二页,我们在Network中看到动态添加了几项,我们选择开头为list_detail_rate.htm?itemId=35648967399的一项。

如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据

然后点击该选项,我们可以在右边选项框中看到有关该链接的信息,我们要复制Request URL中的链接内容。

如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据

我们在浏览器的地址栏中输入刚才我们获得url链接,打开后我们会发现页面返回的是我们所需要的数据,不过显得很乱,因为这是json数据。

如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据

二 获取该ajax请求返回的json数据

下一步,我们就要获取url中的json数据了。我所使用的python编辑器是pycharm,下面看一下python代码:

# -*- coding: utf-8 -*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import requests
url='https://rate.tmall.com/list_detail_rate.htm?itemId=35648967399&spuId=226460655&sellerId=1809124267ℴ=3¤tPage=1&append=0&content=1&tagId=&posi=&picture=&ua=011UW5TcyMNYQwiAiwQRHhBfEF8QXtHcklnMWc%3D%7CUm5OcktyT3ZCf0B9Qn9GeC4%3D%7CU2xMHDJ7G2AHYg8hAS8WKAYmCFQ1Uz9YJlxyJHI%3D%7CVGhXd1llXGVYYVVoV2pVaFFvWGVHe0Z%2FRHFMeUB4QHxCdkh8SXJcCg%3D%3D%7CVWldfS0RMQ47ASEdJwcpSDdNPm4LNBA7RiJLDXIJZBk3YTc%3D%7CVmhIGCUFOBgkGiMXNwswCzALKxcpEikJMwg9HSEfJB8%2FBToPWQ8%3D%7CV29PHzEfP29VbFZ2SnBKdiAAPR0zHT0BOQI8A1UD%7CWGFBET8RMQszDy8QLxUuDjIJNQA1YzU%3D%7CWWBAED4QMAU%2BASEYLBksDDAEOgA1YzU%3D%7CWmJCEjwSMmJXb1d3T3JMc1NmWGJAeFhmW2JCfEZmWGw6GicHKQcnGCUdIBpMGg%3D%3D%7CW2JfYkJ%2FX2BAfEV5WWdfZUV8XGBUdEBgVXVJciQ%3D&isg=82B6A3A1ED52A6996BCA2111C9DAAEE6&_ksTS=1440490222698_2142&callback=jsonp2143' #这里的url比较长
content=requests.get(url).content

print content #打印出来的内容就是我们之前在网页中获取到的json数据。包括用户的评论。

这里的content就是我们所需要的json数据,下一步就需要我们解析这些个json数据了。

三 使用python解析json数据

# -*- coding: utf-8 -*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import requests
import json
import re
url='https://rate.tmall.com/list_detail_rate.htm?itemId=35648967399&spuId=226460655&sellerId=1809124267ℴ=3¤tPage=1&append=0&content=1&tagId=&posi=&picture=&ua=011UW5TcyMNYQwiAiwQRHhBfEF8QXtHcklnMWc%3D%7CUm5OcktyT3ZCf0B9Qn9GeC4%3D%7CU2xMHDJ7G2AHYg8hAS8WKAYmCFQ1Uz9YJlxyJHI%3D%7CVGhXd1llXGVYYVVoV2pVaFFvWGVHe0Z%2FRHFMeUB4QHxCdkh8SXJcCg%3D%3D%7CVWldfS0RMQ47ASEdJwcpSDdNPm4LNBA7RiJLDXIJZBk3YTc%3D%7CVmhIGCUFOBgkGiMXNwswCzALKxcpEikJMwg9HSEfJB8%2FBToPWQ8%3D%7CV29PHzEfP29VbFZ2SnBKdiAAPR0zHT0BOQI8A1UD%7CWGFBET8RMQszDy8QLxUuDjIJNQA1YzU%3D%7CWWBAED4QMAU%2BASEYLBksDDAEOgA1YzU%3D%7CWmJCEjwSMmJXb1d3T3JMc1NmWGJAeFhmW2JCfEZmWGw6GicHKQcnGCUdIBpMGg%3D%3D%7CW2JfYkJ%2FX2BAfEV5WWdfZUV8XGBUdEBgVXVJciQ%3D&isg=82B6A3A1ED52A6996BCA2111C9DAAEE6&_ksTS=1440490222698_2142&callback=jsonp2143'
cont=requests.get(url).content
rex=re.compile(r'\w+[(]{1}(.*)[)]{1}')
content=rex.findall(cont)[0]
con=json.loads(content,"gbk")
count=len(con['rateDetail']['rateList'])
for i in xrange(count):
  print con['rateDetail']['rateList'][i]['appendComment']['content']

如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据

解析:

这里需要导入所要的包,re为正则表达式需要的包,解析json数据需要import json

cont=requests.get(url).content #获取网页中json数据

rex=re.compile(r'\w+[(]{1}(.*)[)]{1}') #正则表达式去除cont数据中多余的部分,是数据成为真正的json格式的数据{“a”:”b”,”c”:”d”}

con=json.loads(content,”gbk”) 使用json的loads函数 将content内容转化为json库函数可以处理的数据格式,”gbk”为数据的编码方式,由于win系统默认为gbk

count=len(con[‘rateDetail'][‘rateList']) #获取用户评论的个数(这里只是当前页的)

for i in xrange(count):

print con[‘rateDetail'][‘rateList'][i][‘appendComment']

#循环遍历用户的评论 并输出(也可以根据需求保存数据,可以查看第四部分)

这里的难点是在杂乱的json数据中查找用户评论的路径

四 保存解析的结果

这里用户可以将用户的评论信息保存到本地,如保存为csv格式。

关于如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。


当前题目:如何通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据-创新互联
URL网址:http://chengdu.cdxwcx.cn/article/ecoco.html