成都网站建设设计

将想法与焦点和您一起共享

mysql架构怎么优化,如何优化mysql

“mysql”达到1亿级别如何设计优化?

“mysql”达到1亿级别如何设计优化?

创新互联主营巢湖网站建设的网络公司,主营网站建设方案,手机APP定制开发,巢湖h5重庆小程序开发搭建,巢湖网站营销推广欢迎巢湖等地区企业咨询

1.首先可以考虑业务层面优化,即垂直分表。

垂直分表就是把一个数据量很大的表,可以按某个字段的属性或使用频繁程度分类,拆分为多个表。

如有多种业务类型,每种业务类型入不同的表,table1,table2,table3.

如果日常业务不需要使用所有数据,可以按时间分表,比如说月表。每个表只存一个月记录。

2.架构上的优化,即水平分表。

水平分表就是根据一列或多列数据的值把数据行放到多个独立的表里,这里不具备业务意义。

如按照id分表,末尾是0-9的数据分别插入到10个表里面。

可能你要问,这样看起来和刚才说的垂直分表没什么区别。只不过是否具备业务意义的差异,都是按字段的值来分表。

实际上,水平分表现在最流行的实现方式,是通过水平分库来实现的。即刚才所说的10个表,分布在10个mysql数据库上。这样可以通过多个低配置主机整合起来,实现高性能。

最常见的解决方案是cobar,这个帖子介绍的比较完善,可以看看。

MySQL如何实现高可用?

1. 概述

我们在考虑MySQL数据库的高可用的架构时,主要要考虑如下几方面:

关于对高可用的分级在这里我们不做详细的讨论,这里只讨论常用高可用方案的优缺点以及高可用方案的选型。

2. 高可用方案

2.1. 主从或主主半同步复制

使用双节点数据库,搭建单向或者双向的半同步复制。在5.7以后的版本中,由于lossless replication、logical多线程复制等一些列新特性的引入,使得MySQL原生半同步复制更加可靠。

常见架构如下:

通常会和proxy、keepalived等第三方软件同时使用,即可以用来监控数据库的 健康 ,又可以执行一系列管理命令。如果主库发生故障,切换到备库后仍然可以继续使用数据库。

优点:

缺点:

2.2. 半同步复制优化

半同步复制机制是可靠的。如果半同步复制一直是生效的,那么便可以认为数据是一致的。但是由于网络波动等一些客观原因,导致半同步复制发生超时而切换为异步复制,那么这时便不能保证数据的一致性。所以尽可能的保证半同步复制,便可提高数据的一致性。

该方案同样使用双节点架构,但是在原有半同复制的基础上做了功能上的优化,使半同步复制的机制变得更加可靠。

可参考的优化方案如下:

半同步复制由于发生超时后,复制断开,当再次建立起复制时,同时建立两条通道,其中一条半同步复制通道从当前位置开始复制,保证从机知道当前主机执行的进度。另外一条异步复制通道开始追补从机落后的数据。当异步复制通道追赶到半同步复制的起始位置时,恢复半同步复制。

搭建两条半同步复制通道,其中连接文件服务器的半同步通道正常情况下不启用,当主从的半同步复制发生网络问题退化后,启动与文件服务器的半同步复制通道。当主从半同步复制恢复后,关闭与文件服务器的半同步复制通道。

优点:

缺点:

2.3. 高可用架构优化

将双节点数据库扩展到多节点数据库,或者多节点数据库集群。可以根据自己的需要选择一主两从、一主多从或者多主多从的集群。

由于半同步复制,存在接收到一个从机的成功应答即认为半同步复制成功的特性,所以多从半同步复制的可靠性要优于单从半同步复制的可靠性。并且多节点同时宕机的几率也要小于单节点宕机的几率,所以多节点架构在一定程度上可以认为高可用性是好于双节点架构。

但是由于数据库数量较多,所以需要数据库管理软件来保证数据库的可维护性。可以选择MMM、MHA或者各个版本的proxy等等。常见方案如下:

MHA Manager会定时探测集群中的master节点,当master出现故障时,它可以自动将最新数据的slave提升为新的master,然后将所有其他的slave重新指向新的master,整个故障转移过程对应用程序完全透明。

MHA Node运行在每台MySQL服务器上,主要作用是切换时处理二进制日志,确保切换尽量少丢数据。

MHA也可以扩展到如下的多节点集群:

优点:

缺点:

Zookeeper使用分布式算法保证集群数据的一致性,使用zookeeper可以有效的保证proxy的高可用性,可以较好的避免网络分区现象的产生。

优点:

缺点:

2.4. 共享存储

共享存储实现了数据库服务器和存储设备的解耦,不同数据库之间的数据同步不再依赖于MySQL的原生复制功能,而是通过磁盘数据同步的手段,来保证数据的一致性。

SAN的概念是允许存储设备和处理器(服务器)之间建立直接的高速网络(与LAN相比)连接,通过这种连接实现数据的集中式存储。常用架构如下:

使用共享存储时,MySQL服务器能够正常挂载文件系统并操作,如果主库发生宕机,备库可以挂载相同的文件系统,保证主库和备库使用相同的数据。

优点:

缺点:

DRBD是一种基于软件、基于网络的块复制存储解决方案,主要用于对服务器之间的磁盘、分区、逻辑卷等进行数据镜像,当用户将数据写入本地磁盘时,还会将数据发送到网络中另一台主机的磁盘上,这样的本地主机(主节点)与远程主机(备节点)的数据就可以保证实时同步。常用架构如下:

当本地主机出现问题,远程主机上还保留着一份相同的数据,可以继续使用,保证了数据的安全。

DRBD是linux内核模块实现的快级别的同步复制技术,可以与SAN达到相同的共享存储效果。

优点:

缺点:

2.5. 分布式协议

分布式协议可以很好解决数据一致性问题。比较常见的方案如下:

MySQL cluster是官方集群的部署方案,通过使用NDB存储引擎实时备份冗余数据,实现数据库的高可用性和数据一致性。

优点:

缺点:

基于Galera的MySQL高可用集群, 是多主数据同步的MySQL集群解决方案,使用简单,没有单点故障,可用性高。常见架构如下:

优点:

缺点:

Paxos 算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。这个算法被认为是同类算法中最有效的。Paxos与MySQL相结合可以实现在分布式的MySQL数据的强一致性。常见架构如下:

优点:

缺点:

3. 总结

随着人们对数据一致性的要求不断的提高,越来越多的方法被尝试用来解决分布式数据一致性的问题,如MySQL自身的优化、MySQL集群架构的优化、Paxos、Raft、2PC算法的引入等等。

而使用分布式算法用来解决MySQL数据库数据一致性的问题的方法,也越来越被人们所接受,一系列成熟的产品如PhxSQL、MariaDB Galera Cluster、Percona XtraDB Cluster等越来越多的被大规模使用。

随着官方MySQL Group Replication的GA,使用分布式协议来解决数据一致性问题已经成为了主流的方向。期望越来越多优秀的解决方案被提出,MySQL高可用问题可以被更好的解决。

分布式解决方案 tidb

多主 多备 master lvs做vip 读写分离中间件

MySQL性能调优 – 你必须了解的15个重要变量

前言:

MYSQL 应该是最流行了 WEB 后端数据库。虽然 NOSQL 最近越来越多的被提到,但是相信大部分架构师还是会选择 MYSQL 来做数据存储。本文作者总结梳理MySQL性能调优的15个重要变量,又不足需要补充的还望大佬指出。

1.DEFAULT_STORAGE_ENGINE

如果你已经在用MySQL 5.6或者5.7,并且你的数据表都是InnoDB,那么表示你已经设置好了。如果没有,确保把你的表转换为InnoDB并且设置default_storage_engine为InnoDB。

为什么?简而言之,因为InnoDB是MySQL(包括Percona Server和MariaDB)最好的存储引擎 – 它支持事务,高并发,有着非常好的性能表现(当配置正确时)。这里有详细的版本介绍为什么

2.INNODB_BUFFER_POOL_SIZE

这个是InnoDB最重要变量。实际上,如果你的主要存储引擎是InnoDB,那么对于你,这个变量对于MySQL是最重要的。

基本上,innodb_buffer_pool_size指定了MySQL应该分配给InnoDB缓冲池多少内存,InnoDB缓冲池用来存储缓存的数据,二级索引,脏数据(已经被更改但没有刷新到硬盘的数据)以及各种内部结构如自适应哈希索引。

根据经验,在一个独立的MySQL服务器应该分配给MySQL整个机器总内存的80%。如果你的MySQL运行在一个共享服务器,或者你想知道InnoDB缓冲池大小是否正确设置,详细请看这里。

3.INNODB_LOG_FILE_SIZE

InnoDB重做日志文件的设置在MySQL社区也叫做事务日志。直到MySQL 5.6.8事务日志默认值innodb_log_file_size=5M是唯一最大的InnoDB性能杀手。从MySQL 5.6.8开始,默认值提升到48M,但对于许多稍繁忙的系统,还远远要低。

根据经验,你应该设置的日志大小能在你服务器繁忙时能存储1-2小时的写入量。如果不想这么麻烦,那么设置1-2G的大小会让你的性能有一个不错的表现。这个变量也相当重要,更详细的介绍请看这里。

当然,如果你有大量的大事务更改,那么,更改比默认innodb日志缓冲大小更大的值会对你的性能有一定的提高,但是你使用的是autocommit,或者你的事务更改小于几k,那还是保持默认的值吧。

4.INNODB_FLUSH_LOG_AT_TRX_COMMIT

默认下,innodb_flush_log_at_trx_commit设置为1表示InnoDB在每次事务提交后立即刷新同步数据到硬盘。如果你使用autocommit,那么你的每一个INSERT, UPDATE或DELETE语句都是一个事务提交。

同步是一个昂贵的操作(特别是当你没有写回缓存时),因为它涉及对硬盘的实际同步物理写入。所以如果可能,并不建议使用默认值。

两个可选的值是0和2:

* 0表示刷新到硬盘,但不同步(提交事务时没有实际的IO操作)

* 2表示不刷新和不同步(也没有实际的IO操作)

所以你如果设置它为0或2,则同步操作每秒执行一次。所以明显的缺点是你可能会丢失上一秒的提交数据。具体来说,你的事务已经提交了,但服务器马上断电了,那么你的提交相当于没有发生过。

显示的,对于金融机构,如银行,这是无法忍受的。不过对于大多数网站,可以设置为innodb_flush_log_at_trx_commit=0|2,即使服务器最终崩溃也没有什么大问题。毕竟,仅仅在几年前有许多网站还是用MyISAM,当崩溃时会丢失30s的数据(更不要提那令人抓狂的慢修复进程)。

那么,0和2之间的实际区别是什么?性能明显的差异是可以忽略不计,因为刷新到操作系统缓存的操作是非常快的。所以很明显应该设置为0,万一MySQL崩溃(不是整个机器),你不会丢失任何数据,因为数据已经在OS缓存,最终还是会同步到硬盘的。

5.SYNC_BINLOG

已经有大量的文档写到sync_binlog,以及它和innodb_flush_log_at_trx_commit的关系,下面我们来简单的介绍下:

a) 如果你的服务器没有设置从服务器,而且你不做备份,那么设置sync_binlog=0将对性能有好处。

b) 如果你有从服务器并且做备份,但你不介意当主服务器崩溃时在二进制日志丢失一些事件,那么为了更好的性能还是设置为sync_binlog=0.

c) 如果你有从服务器并且备份,你非常在意从服务器的一致性,以及能及时恢复到一个时间点(通过使用最新的一致性备份和二进制日志将数据库恢复到特定时间点的能力),那么你应该设置innodb_flush_log_at_trx_commit=1,并且需要认真考虑使用sync_binlog=1。

问题是sync_binlog=1代价比较高 – 现在每个事务也要同步一次到硬盘。你可能会想为什么不把两次同步合并成一次,想法正确 – 新版本的MySQL(5.6和5.7,MariaDB和Percona Server)已经能合并提交,那么在这种情况下sync_binlog=1的操作也不是这么昂贵了,但在旧的mysql版本中仍然会对性能有很大影响。

6.INNODB_FLUSH_METHOD

将innodb_flush_method设置为O_DIRECT以避免双重缓冲.唯一一种情况你不应该使用O_DIRECT是当你操作系统不支持时。但如果你运行的是Linux,使用O_DIRECT来激活直接IO。

不用直接IO,双重缓冲将会发生,因为所有的数据库更改首先会写入到OS缓存然后才同步到硬盘 – 所以InnoDB缓冲池和OS缓存会同时持有一份相同的数据。特别是如果你的缓冲池限制为总内存的50%,那意味着在写密集的环境中你可能会浪费高达50%的内存。如果没有限制为50%,服务器可能由于OS缓存的高压力会使用到swap。

简单地说,设置为innodb_flush_method=O_DIRECT。

7.INNODB_BUFFER_POOL_INSTANCES

MySQL 5.5引入了缓冲实例作为减小内部锁争用来提高MySQL吞吐量的手段。

在5.5版本这个对提升吞吐量帮助很小,然后在MySQL 5.6版本这个提升就非常大了,所以在MySQL5.5中你可能会保守地设置innodb_buffer_pool_instances=4,在MySQL 5.6和5.7中你可以设置为8-16个缓冲池实例。

你设置后观察会觉得性能提高不大,但在大多数高负载情况下,它应该会有不错的表现。

对了,不要指望这个设置能减少你单个查询的响应时间。这个是在高并发负载的服务器上才看得出区别。比如多个线程同时做许多事情。

8.INNODB_THREAD_CONCURRENCY

InnoDB有一种方法来控制并行执行的线程数 – 我们称为并发控制机制。大部分是由innodb_thread_concurrency值来控制的。如果设置为0,并发控制就关闭了,因此InnoDB会立即处理所有进来的请求(尽可能多的)。

在你有32CPU核心且只有4个请求时会没什么问题。不过想像下你只有4CPU核心和32个请求时 – 如果你让32个请求同时处理,你这个自找麻烦。因为这些32个请求只有4 CPU核心,显然地会比平常慢至少8倍(实际上是大于8倍),而然这些请求每个都有自己的外部和内部锁,这有很大可能堆积请求。

下面介绍如何更改这个变量,在mysql命令行提示符执行:

对于大多数工作负载和服务器,设置为8是一个好开端,然后你可以根据服务器达到了这个限制而资源使用率利用不足时逐渐增加。可以通过show engine innodb status\G来查看目前查询处理情况,查找类似如下行:

9.SKIP_NAME_RESOLVE

这一项不得不提及,因为仍然有很多人没有添加这一项。你应该添加skip_name_resolve来避免连接时DNS解析。

大多数情况下你更改这个会没有什么感觉,因为大多数情况下DNS服务器解析会非常快。不过当DNS服务器失败时,它会出现在你服务器上出现“unauthenticated connections” ,而就是为什么所有的请求都突然开始慢下来了。

所以不要等到这种事情发生才更改。现在添加这个变量并且避免基于主机名的授权。

10.INNODB_IO_CAPACITY, INNODB_IO_CAPACITY_MAX

* innodb_io_capacity:用来当刷新脏数据时,控制MySQL每秒执行的写IO量。

* innodb_io_capacity_max: 在压力下,控制当刷新脏数据时MySQL每秒执行的写IO量

首先,这与读取无关 – SELECT查询执行的操作。对于读操作,MySQL会尽最大可能处理并返回结果。至于写操作,MySQL在后台会循环刷新,在每一个循环会检查有多少数据需要刷新,并且不会用超过innodb_io_capacity指定的数来做刷新操作。这也包括更改缓冲区合并(在它们刷新到磁盘之前,更改缓冲区是辅助脏页存储的关键)。

第二,我需要解释一下什么叫“在压力下”,MySQL中称为”紧急情况”,是当MySQL在后台刷新时,它需要刷新一些数据为了让新的写操作进来。然后,MySQL会用到innodb_io_capacity_max。

那么,应该设置innodb_io_capacity和innodb_io_capacity_max为什么呢?

最好的方法是测量你的存储设置的随机写吞吐量,然后给innodb_io_capacity_max设置为你的设备能达到的最大IOPS。innodb_io_capacity就设置为它的50-75%,特别是你的系统主要是写操作时。

通常你可以预测你的系统的IOPS是多少。例如由8 15k硬盘组成的RAID10能做大约每秒1000随机写操作,所以你可以设置innodb_io_capacity=600和innodb_io_capacity_max=1000。许多廉价企业SSD可以做4,000-10,000 IOPS等。

这个值设置得不完美问题不大。但是,要注意默认的200和400会限制你的写吞吐量,因此你可能偶尔会捕捉到刷新进程。如果出现这种情况,可能是已经达到你硬盘的写IO吞吐量,或者这个值设置得太小限制了吞吐量。

11.INNODB_STATS_ON_METADATA

如果你跑的是MySQL 5.6或5.7,你不需要更改innodb_stats_on_metadata的默认值,因为它已经设置正确了。

不过在MySQL 5.5或5.1,强烈建议关闭这个变量 – 如果是开启,像命令show table status会立即查询INFORMATION_SCHEMA而不是等几秒再执行,这会使用到额外的IO操作。

从5.1.32版本开始,这个是动态变量,意味着你不需要重启MySQL服务器来关闭它。

12.INNODB_BUFFER_POOL_DUMP_AT_SHUTDOWN INNODB_BUFFER_POOL_LOAD_AT_STARTUP

innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup这两个变量与性能无关,不过如果你偶尔重启mysql服务器(如生效配置),那么就有关。当两个都激活时,MySQL缓冲池的内容(更具体地说,是缓存页)在停止MySQL时存储到一个文件。当你下次启动MySQL时,它会在后台启动一个线程来加载缓冲池的内容以提高预热速度到3-5倍。

两件事:

第一,它实际上没有在关闭时复制缓冲池内容到文件,仅仅是复制表空间ID和页面ID – 足够的信息来定位硬盘上的页面了。然后它就能以大量的顺序读非常快速的加载那些页面,而不是需要成千上万的小随机读。

第二,启动时是在后台加载内容,因为MySQL不需要等到缓冲池内容加载完成再开始接受请求(所以看起来不会有什么影响)。

从MySQL 5.7.7开始,默认只有25%的缓冲池页面在mysql关闭时存储到文件,但是你可以控制这个值 – 使用innodb_buffer_pool_dump_pct,建议75-100。

这个特性从MySQL 5.6才开始支持。

13.INNODB_ADAPTIVE_HASH_INDEX_PARTS

如果你运行着一个大量SELECT查询的MySQL服务器(并且已经尽可能优化),那么自适应哈希索引将下你的下一个瓶颈。自适应哈希索引是InnoDB内部维护的动态索引,可以提高最常用的查询模式的性能。这个特性可以重启服务器关闭,不过默认下在mysql的所有版本开启。

这个技术非常复杂,在大多数情况下它会对大多数类型的查询直到加速的作用。不过,当你有太多的查询往数据库,在某一个点上它会花过多的时间等待AHI锁和闩锁。

如果你的是MySQL 5.7,没有这个问题 – innodb_adaptive_hash_index_parts默认设置为8,所以自适应哈希索引被切割为8个分区,因为不存在全局互斥。

不过在mysql 5.7前的版本,没有AHI分区数量的控制。换句话说,有一个全局互斥锁来保护AHI,可能导致你的select查询经常撞墙。

所以如果你运行的是5.1或5.6,并且有大量的select查询,最简单的方案就是切换成同一版本的Percona Server来激活AHI分区。

14.QUERY_CACHE_TYPE

如果人认为查询缓存效果很好,肯定应该使用它。好吧,有时候是有用的。不过这个只在你在低负载时有用,特别是在低负载下大多数是读取,小量写或者没有。

如果是那样的情况,设置query_cache_type=ON和query_cache_size=256M就好了。不过记住不能把256M设置更高的值了,否则会由于查询缓存失效时,导致引起严重的服务器停顿。

如果你的MySQL服务器高负载动作,建议设置query_cache_size=0和query_cache_type=OFF,并重启服务器生效。那样Mysql就会停止在所有的查询使用查询缓存互斥锁。

15.TABLE_OPEN_CACHE_INSTANCES

从MySQL 5.6.6开始,表缓存能分割到多个分区。

表缓存用来存放目前已打开表的列表,当每一个表打开或关闭互斥体就被锁定 – 即使这是一个隐式临时表。使用多个分区绝对减少了潜在的争用。

从MySQL 5.7.8开始,table_open_cache_instances=16是默认的配置。

欢迎做Java的工程师朋友们私信我资料免费获取免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)

其中覆盖了互联网的方方面面,期间碰到各种产品各种场景下的各种问题,很值得大家借鉴和学习,扩展自己的技术广度和知识面。

MySQL常用优化方案

语句执行后,会显示三个字段: Query_ID(执行ID) | Duration(持续时间)| Query(查询语句) ;

拿到后Query_ID后,可执行 show profile for query Query_ID ,查看详细的准备时间,执行时间、执行结束( preparing、executing、end )等。

显示用户正在运行的线程,需要注意的是,除了 root 用户能看到所有正在运行的线程外,其他用户都只能看到自己正在运行的线程,看不到其它用户正在运行的线程。除非单独个这个用户赋予了PROCESS 权限。

显示字段包含: User| Host| db | Command | Time| State| Info 等。

解析语句,查询是否命中索引,及,命中何种索引,用以判断是否符合我们的预期。

返回字段包含: select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra 等。

select_type 常见类型:

(1) SIMPLE(简单SELECT,不使用UNION或子查询等)

(2) PRIMARY(子查询中最外层查询,查询中若包含任何复杂的子部分,最外层的select被标记为PRIMARY)

(3) UNION(UNION中的第二个或后面的SELECT语句)

(4) SUBQUERY(子查询中的第一个SELECT,结果不依赖于外部查询)

table 常见类型:

显示这一行的数据是关于哪张表的.

有时不是真实的表名字,看到的是derivedx(x是个数字,我的理解是第几步执行的结果)

type 常见类型:

对表访问方式,表示MySQL在表中找到所需行的方式,又称“访问类型”。

常用的类型有: ALL、index、range、 ref、eq_ref、const、system、NULL (从左到右,性能从差到好)

possible_keys

指出MySQL能使用哪个索引在表中找到记录,查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询使用(该查询可以利用的索引,如果没有任何索引显示 null)

该列完全独立于EXPLAIN输出所示的表的次序。这意味着在possible_keys中的某些键实际上不能按生成的表次序使用。

如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查WHERE子句看是否它引用某些列或适合索引的列来提高你的查询性能。如果是这样,创造一个适当的索引并且再次用EXPLAIN检查查询

key

key列显示MySQL实际决定使用的键(索引),必然包含在possible_keys中

如果没有选择索引,键是NULL。要想强制MySQL使用或忽视possible_keys列中的索引,在查询中使用FORCE INDEX、USE INDEX或者IGNORE INDEX。

key_len

表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度,非实际长度,为最大可能长度。

注:不损失精确性的情况下,长度越短越好。

ref

列与索引的比较,表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值。

rows

估算出结果集行数,表示MySQL根据表统计信息及索引选用情况,估算的找到所需的记录所需要读取的行数;

extra

该列包含MySQL解决查询的详细信息,有以下几种情况:

(1).Distinct

一旦MYSQL找到了与行相联合匹配的行,就不再搜索了

(2).Not exists

MYSQL优化了LEFT JOIN,一旦它找到了匹配LEFT JOIN标准的行,就不再搜索了

(3).Range checked for each

Record(index map:#)

没有找到理想的索引,因此对于从前面表中来的每一个行组合,MYSQL检查使用哪个索引,并用它来从表中返回行。这是使用索引的最慢的连接之一

(4).Using filesort

看到这个的时候,查询就需要优化了。MYSQL需要进行额外的步骤来发现如何对返回的行排序。它根据连接类型以及存储排序键值和匹配条件的全部行的行指针来排序全部行;

(5).Using temporary

看到这个的时候,查询需要优化了。这里,MYSQL需要创建一个临时表来存储结果,这通常发生在对不同的列集进行ORDER BY上,而不是GROUP BY上;

(6).Using index

列数据是从仅仅使用了索引中的信息而没有读取实际的行动的表返回的,这发生在对表的全部的请求列都是同一个索引的部分的时候。

(7).Using where

使用了WHERE从句来限制哪些行将与下一张表匹配或者是返回给用户。如果不想返回表中的全部行,并且连接类型ALL或index,这就会发生,或者是查询有问题。

mysql 如何优化无索引查询

mysql优化无索引查询:SQL CREATE TABLE test_tab (id INT,name VARCHAR(10),age INT,val VARCHAR(10)。

1、对查询进行优化,应尽量避免全表扫描,首先应考虑在where及order by涉及的列上建立索引。

2、应尽量避免在 where子句中使用!=或操作符,否则将引擎放弃使用索引而进行全表扫描。

3、应尽量避免在 where子句中对字段进行null值判断,否则将导致引擎放弃使用索引而进行全表扫描。

运行mysql安装文件:

按 Next,然后选择安装方式,有 "Typical(默认)"、"Complete(完全)"、"Custom(用户自定义)",选择第二个选项 "Custom",下一步, MySQL Server (mysql服务器), Developer Components (开发者部分), Debug Symbols (调试符号), Server data files (服务器数据文件) 默认。

改变安装路径;原路径是"C:\Program Files\MySQL\MySQL Server 5.5\",也可以修改为:"E:\Program Files\MySQL Server 5.5\"。

超详细MySQL数据库优化

数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷.

1. 优化一览图

2. 优化

笔者将优化分为了两大类,软优化和硬优化,软优化一般是操作数据库即可,而硬优化则是操作服务器硬件及参数设置.

2.1 软优化

2.1.1 查询语句优化

1.首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息.

2.例:

显示:

其中会显示索引和查询数据读取数据条数等信息.

2.1.2 优化子查询

在MySQL中,尽量使用JOIN来代替子查询.因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高.

2.1.3 使用索引

索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者MySQL数据库索引一文,介绍比较详细,此处记录使用索引的三大注意事项:

2.1.4 分解表

对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,

2.1.5 中间表

对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时.

2.1.6 增加冗余字段

类似于创建中间表,增加冗余也是为了减少连接查询.

2.1.7 分析表,,检查表,优化表

分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费.

1. 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;

2. 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]

option 只对MyISAM有效,共五个参数值:

3. 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;

LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志.,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁.

2.2 硬优化

2.2.1 硬件三件套

1.配置多核心和频率高的cpu,多核心可以执行多个线程.

2.配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度.

3.配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行操作的能力.

2.2.2 优化数据库参数

优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能.MySQL服务的配置参数都在my.cnf或my.ini,下面列出性能影响较大的几个参数.

2.2.3 分库分表

因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。

2.2.4 缓存集群

如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。

一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计.因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了.


网站题目:mysql架构怎么优化,如何优化mysql
URL链接:http://chengdu.cdxwcx.cn/article/dsssdos.html