成都网站建设设计

将想法与焦点和您一起共享

nosql数据库数据源,主流的nosql数据库

大数据从技术层面分为那几层,每一层有什么功能?

大数据技术层面主要分为这几层

创新互联公司成立于2013年,我们提供高端网站建设公司网站制作成都网站设计公司、网站定制、全网营销推广小程序设计、微信公众号开发、网站推广服务,提供专业营销思路、内容策划、视觉设计、程序开发来完成项目落地,为围栏护栏企业提供源源不断的流量和订单咨询。

 1. 预测分析技术

这也是大数据的主要功能之一。预测分析允许公司通过分析大数据源来发现、评估、优化和部署预测模型,从而提高业务性能或降低风险。同时,大数据的预测分析也与我们的生活息息相关。淘宝会预测你每次购物可能还想买什么,爱奇艺正在预测你可能想看什么,百合网和其他约会网站甚至试图预测你会爱上谁……

2. NoSQL数据库

NoSQL,Not Only SQL,意思是“不仅仅是SQL”,泛指非关系型数据库。NoSQL数据库提供了比关系数据库更灵活、可伸缩和更便宜的替代方案,打破了传统数据库市场一统江山的格局。并且,NoSQL数据库能够更好地处理大数据应用的需求。常见的NoSQL数据库有HBase、Redis、MongoDB、Couchbase、LevelDB等。

3. 搜索和知识发现

支持来自于多种数据源(如文件系统、数据库、流、api和其他平台和应用程序)中的大型非结构化和结构化数据存储库中自助提取信息的工具和技术。如,数据挖掘技术和各种大数据平台。

4. 大数据流计算引擎

能够过滤、聚合、丰富和分析来自多个完全不同的活动数据源的数据的高吞吐量的框架,可以采用任何数据格式。现今流行的流式计算引擎有Spark Streaming和Flink。

5. 内存数据结构

通过在分布式计算机系统中动态随机访问内存(DRAM)、闪存或SSD上分布数据,提供低延迟的访问和处理大量数据。

6. 分布式文件存储

为了保证文件的可靠性和存取性能,数据通常以副本的方式存储在多个节点上的计算机网络。常见的分布式文件系统有GFS、HDFS、Lustre 、Ceph等。

7. 数据虚拟化

数据虚拟化是一种数据管理方法,它允许应用程序检索和操作数据,而不需要关心有关数据的技术细节,比如数据在源文件中是何种格式,或者数据存储的物理位置,并且可以提供单个客户用户视图。

8. 数据集成

用于跨解决方案进行数据编排的工具,如Amazon Elastic MapReduce (EMR)、Apache Hive、Apache Pig、Apache Spark、MapReduce、Couchbase、Hadoop和MongoDB等。

9. 数据准备

减轻采购、成形、清理和共享各种杂乱数据集的负担的软件,以加速数据对分析的有用性。

10. 数据质量

使用分布式数据存储和数据库上的并行操作,对大型高速数据集进行数据清理和充实的产品。

为什么选择NoSQL数据库如此困难

传统观念中 NoSQL数据库非常适合某些数据类型,如:非关系数据源。同时,NoSQL被吹捧为最适合Web应用程序的优秀平台。然而他适合大多数数据,特别是web应用程序的数据是相关型。那么,这是否可以给你一个坚持使用RDMS的理由呢?也不一定,即使很困难,我们还是要做出选择。

评估NoSQL是一个很茅盾的理论,一些人认为,应该将所有文档数据存储在一个文档中,做链接代码就是亵渎神明。另外一部分人认为,存储应用文档,加入代码,才是合理选择。与此同时,不同的数据库,需要在文档中限制嵌套数据数量。有的人会鼓励文档引用。这是NoSQL数据模型的基本部分,也没有一个明确的共识。

曾经有一篇很热的帖子"Why you should never use XYZ",我想,读到这里,一定会有人搜索这篇文章。当然,这种文章各式各样,太过于笼统的标题也没什么帮助。毫无疑问,会有人会搜索这个文章,然后再找

到这个文章,进一步深入,找到该文章的方法远比成功(理解问题)的故事多。很难知道谁提供了一个有效的技术问题,谁又误读了这个问题(或者缺少证据证明其观点)。

有大量选择,RDBMS的世界,选择就很容易。你有4或5个目标,大家工作方式差不多,来选择环境、预算支持的平台。对于成熟的产品,风险比较小。 NoSQL的世界,有很多数据库引擎功能选择。每一个有自己的独特优势,也有致命弱点。所以选择很难, NoSQL项目生命周期短,尝试新项目或者流行项目也会有风险。上次,我的的项目是在 CouchDB上,而现在似乎停摆了。

做出这个痛苦决定的原因是,这可能是一个案例:你需要做一大堆工作,才能知道,你做出的选择对与错。你可以实体化你的数据模型,了解他与系统的工作情况,但是,这只有你正真撞到南墙,才可以找到裂缝(答案)。以我为例,我建的应用程序是关系数据库,移动文件存储的主要因素是,需要一个无模式设计来达到我的目标。使用NoSQL 数据库存储关系型数据库并不是我们所常说的,虽然,这种事常常发生。

现在我在用 Couchbase 和 MongoDB,Mongo对我没多大吸引力,不过鉴于他非常流行,对于引起来说,很有好处。当然,很多都可以以同样的方式流行。PHP很流行,因为他的易用性,而不是因为他很好。

什么是NoSQL数据库?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,

泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。

(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 关系型数据库与NoSQL的区别?

3.1 RDBMS

高度组织化结构化数据

结构化查询语言(SQL)

数据和关系都存储在单独的表中。

数据操纵语言,数据定义语言

严格的一致性

基础事务

ACID

关系型数据库遵循ACID规则

事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:

A (Atomicity) 原子性

原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。

C (Consistency) 一致性

一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。

I (Isolation) 独立性

所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。

3.2 NoSQL

代表着不仅仅是SQL

没有声明性查询语言

没有预定义的模式

键 - 值对存储,列存储,文档存储,图形数据库

最终一致性,而非ACID属性

非结构化和不可预知的数据

CAP定理

高性能,高可用性和可伸缩性

分布式数据库中的CAP原理(了解)

CAP定理:

Consistency(一致性), 数据一致更新,所有数据变动都是同步的

Availability(可用性), 好的响应性能

Partition tolerance(分区容错性) 可靠性

P: 系统中任意信息的丢失或失败不会影响系统的继续运作。

定理:任何分布式系统只可同时满足二点,没法三者兼顾。

CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,

因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:

CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。

CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。

AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。

而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。

所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。

说明:C:强一致性 A:高可用性 P:分布式容忍性

举例:

CA:传统Oracle数据库

AP:大多数网站架构的选择

CP:Redis、Mongodb

注意:分布式架构的时候必须做出取舍。

一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。

因此牺牲C换取P,这是目前分布式数据库产品的方向。

4. 当下NoSQL的经典应用

当下的应用是 SQL 与 NoSQL 一起使用的。

代表项目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。

难点:

数据类型多样性。

数据源多样性和变化重构。

数据源改造而服务平台不需要大面积重构。


名称栏目:nosql数据库数据源,主流的nosql数据库
URL地址:http://chengdu.cdxwcx.cn/article/dsspcsd.html