成都网站建设设计

将想法与焦点和您一起共享

mysql怎么分配空间,mysql内存分配方式

mysql如何建表空间

在mysql中,也出现了类似oracle中的表空间概念。

创新互联公司是专业的潼关网站建设公司,潼关接单;提供成都网站建设、成都做网站,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行潼关网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

不过二者好像不同?具体不太清楚oracle是怎么回事。

mysql表空间是什么概念呢?

开启了Innodb的innodb_file_per_table这个参数之后【innodb_file_per_table = 1】,也就是启用InnoDB的独立表空间模式,便于管理。此时,在新建的innodb表的数据库目录下会多出来一个.ibd这个文件。这个就是此时的数据文件了。mysql会把这个innodb表的数据存放在这个文件中。并且每个innodb表此时都会对应这么一个ibd文件。

看官方文档:

If innodb_file_per_table is disabled (the default), InnoDB creates tables in the system tablespace. Ifinnodb_file_per_table is enabled, InnoDB creates each new table using its own .ibd file for storing data and indexes, rather than in the system tablespace.

那么这样做有什么好处呢?

可以实现单表在不同的数据库之间移动。具体怎么移动呢?假设有两个数据库,一个test,一个tt。

InnoDB 默认会将所有的数据库InnoDB引擎的表数据存储在一个共享空间中:ibdata1,这样就感觉不爽,增删数据库的时候,ibdata1文件不会自动收缩,单个数据库的备份也将成为问题。通常只能将数据使用mysqldump 导出,然后再导入解决这个问题。共享表空间在Insert操作上少有优势。其它都没独立表空间表现好。当启用独立表空间时,请合理调整一 下innodb_open_files 的值。

-------------------------------------------------------------------------------

需要说明的是:

1、设置了独立表空间之后,如果改成了共享表空间,那么,此时如果执行表的插入操作,数据会存放在哪里呢?

对于之前已经存在了的表,还是存放在独立表空间。对于新建的表,就会存放在共享表空间了。

2、如果一开始用了独立表空间,后来改了innodb_file_per_table变量的值,改成独立表空间了,那么数据如何存储?

对于已经存在了的innodb引擎的表来说,数据还是存放在共享表空间的,而此时如果创建了新的表,那么就会在数据库的目录中多出一个.ibd的文件用于存储这个新表的数据。

总结上面的1、2,就是:原来的还是按照原来的方式存储。新的表按照新的规则来存储。

mysql之表分区

分区介绍:

一、什么是分区?

所谓分区,就是将一个表分成多个区块进行操作和保存,从而降低每次操作的数据,提高性能。而对于应用来说则是透明的,从逻辑上看只有一张表,但在物理上这个表可能是由多个物理分区组成的,每个分区都是独立的对象,可以进行独立处理。

二、分区作用

1.可以逻辑数据分割,分割数据能够有多个不同的物理文件路径。

2.可以存储更多的数据,突破系统单个文件最大限制。

3.提升性能,提高每个分区的读写速度,提高分区范围查询的速度。

4.可以通过删除相关分区来快速删除数据

5.通过跨多个磁盘来分散数据查询,从而提高磁盘I/O的性能。

6.涉及到例如SUM()、COUNT()这样聚合函数的查询,可以很容易的进行并行处理。

7.可以备份和恢复独立的分区,这对大数据量很有好处。

三、分区能支持的引擎

MySQL支持大部分引擎创建分区,入MyISAM、InnoDB等;不支持MERGE和CSV等来创建分区。同一个分区表中的所有分区必须是同一个存储引擎。值得注意的是,在MySQL8版本中,MyISAM表引擎不支持分区。

四、确认MySQL支持分区

从MySQL5.1开始引入分区功能,可以如下方式查看是否支持:

老版本用:SHOW VARIABLES LIKE '%partition%';

新版本用:show plugins;

五、分区类型

1. RANGE分区:基于属于一个给定连续区间的列值,把多行分配给分区。

例如,可以将一个表通过年份划分成两个分区,2001 -2010年、2011-2020。

2. LIST分区:类似于RANGE分区,LIST是列值匹配一个离散值集合中的某个值来进行选择。

比如 根据字段 把值为1、3、5的放到一起,2、4、6的另外放到一起 等等...

3. HASH分区:基于用户定义的表达式的返回值来进行选择分区,该表达式使用将要插入到表中的这些行的列值来进行计算,这个函数必须产生非负整数值。

通过HASH运算来进行分区,分布的比较均匀

4. KEY分区:类似于按HASH分区,由MySQL服务器提供其自身的哈希函数。

按照KEY进行分区类似于按照HASH分区

六、使用分区注意事项

1. 如果表中存在primary key 或者 unique key 时,分区的列必须是paimary key或者unique key的一个组成部分,也就是说,分区函数的列只能从pk或者uk这些key中取子集

2. 如果表中不存在任何的paimary key或者unique key,则可以指定任何一个列作为分区列

3. 5.5版本前的RANGE、LIST、HASH分区要求分区键必须是int;MySQL5.5及以上,支持非整形的RANGE和LIST分区,即:range columns 和 list columns (可以用字符串来进行分区)。

七、分区命名

1. 分区的名字基本上遵循其他MySQL 标识符应当遵循的原则,例如用于表和数据库名字的标识符。应当注意的是,分区的名字是不区分大小写的。

2. 无论使用何种类型的分区,分区总是在创建时就自动的顺序编号,且从0开始记录。

八、 创建分区

1. RANGE分区:

解读:以上为 uuid小于5时放到p0分区下,uuid大于5且小于10放到p1分区下,uuid大于10且小于15放到p2分区下,uuid大于15 一直到最大值的存在p3分区下

2. LIST分区:

解读:以上为uuid 等于1/2/3/5时放到p0分区,7/9/10放到p1分区,11/15放到p2分区。当时用insert into时 如果uuid的值不存在p0/p1/p2分区时,则会插入失败而报错。

3. HASH分区:

HASH分区主要用来确保数据在预先确定数目的分区中平均分布。在RANGE分区和LIST分区中必须明确指定一个指定的列值或列值集合以指定应该保存在哪个分区中。而在HASH分区中,MySQL会自动完成这些工作,要做的只是基于将要被哈希的列值指定一个表达式,以及指定被分区的表将要被分割成的分区数量,如:

解读:MySQL自动创建3个分区,在执行insert into时,根据插入的uuid通过算法来自动分配区间。

注意:

(1) 由于每次插入、更新、删除一行,这个表达式都要计算一次,这意味着非常复杂的表达式可能会引起性能问题,尤其是在执行同时影响大量行的运算(例如批量插入)的时候。

(2) 最有效率的哈希函数是只对单个表列进行计算,并且它的值随列值进行一致的增大或减小,因为这考虑了在分区范围上的“修剪”。也就是说,表达式值和它所基于的列的值变化越接近,就越能有效地使用该表达式来进行HASH分区。

3.1:线性HASH分区

线性HASH分区在“PARTITION BY”子句中添加“LINEAR”关键字。

线性HASH分区的有点在于增加、删除、合并和拆分分区将变得更加快捷,有利于处理含有及其大量数据的表。它的缺点在于各个分区间数据的分布不大可能均衡。

4. KEY分区

类似于HASH分区,HASH分区允许用户自定义的表达式,而KEY分区则不允许使用用户自定义的表达式;HASH分区只支持整数分区,KEY分区支持除了blob和text类型之外的其他数据类型分区。

与HASH分区不同,创建KEY分区表的时候,可以不指定分区键,默认会选择使用主键或唯一键作为分区键,没有主键或唯一键,就必须指定分区键。

解读:根据分区键来进行分区

5. 子分区

子分区是分区表中,每个分区的再次分割,适合保存非常大量的数据。

解读:主分区使用RANGE按照年来进行分区,有3个RANGE分区。这3个分区中又被进一步分成了2个子分区,实际上,整个表被分成了3 * 2 = 6个分区。每个子分区按照天进行HASH分区。小于2017的放在一起,2017-2020的放在一起,大于2020的放在一起。

注意:

(1) 在MySQL5.1中,对于已经通过RANGE或LIST分区了的表在进行子分区是可能的。子分区既可以使用HASH分区,也可以使用KEY分区。这也被称为复合分区。

(2) 每个分区必须有相同数量的子分区。

(3) 如果在一个分区表上的任何分区上使用SUBPARTITION来明确定义任何子分区,那么就必须定义所有的子分区。

(4) 每个SUBPARTITION子句必须包含(至少)子分区的一个名字。

(5) 在每个子分区内,子分区的名字必须是惟一的,目前在整个表中,也要保持唯一。例如:

子分区可以用于特别大的表,可以在多个磁盘间分配数据和索引。例如:

九、MySQL分区处理NULL值的方式

十、分区管理概述

可以对分区进行添加、删除、重新定义、合并或拆分等管理操作。

① RANGE和LIST分区的管理

1. 删除分区语句如:alter table tbl_test drop partition p0;

注意:

(1) 当删除了一个分区,也同时删除了该分区中所有的数据。

(2) 可以通过show create table tbl_test;来查看新的创建表的语句。

(3) 如果是LIST分区的话,删除的数据不能新增进来,因为这些行的列值包含在已经删除了的分区的值列表中。

2. 添加分区语句如:alter table tbl_test add partition(partition p3 values less than(50));

注意:

(1) 对于RANGE分区的表,只可以添加新的分区到分区列表的最高端。

(2) 对于LIST分区的表,不能添加已经包含在现有分区值列表中的任意值。

3. 如果希望能不丢失数据的条件下重新定义分区,可以使用如下语句:

REORGANIZE会对分区的数据进行重构。

ALTER TABLE tbl_name REORGANIZE PARTITION partition_list INTO(partition_definitions)

(1) 拆分分区如:

ALTER TABLE tbl_name REORGANIZE PARTITION partition_list INTO(partition s0 values less than(5),partition s1 values less than(10));

或者如:

ALTER TABLE tbl_name REORGANIZE PARTITION p0 INTO(partition s0 values in(1,2,3), partition s1 values in(4,5));

(2) 合并分区如:ALTER TABLE tbl_name REORGANIZE PARTITION s0,s1 INTO(partition p0 values in(1,2,3,4,5));

4. 删除所有分区,但保留数据,形式:ALTER TABLE tbl_name remove partitioning;

② HASH和KEY分区的管理

1. 减少分区数量语句如:ALTER TABLE tbl_name COALESCE PARTITION 2;

2. 添加分区数量语句如:ALTER TABLE tbl_name add PARTITION partitions 2;

③ 其他分区管理语句

1. 重建分区:类似于先删除保存在分区中的所有记录,然后重新插入它们,可用于整理分区碎片。如:ALTER table tbl_name REBUILD PARTITION p2,p3;

2. 优化分区:如果从分区中删除了大量的行,或者对一个带有可变长度的行(也就是说,有VARCHAR,BLOB或TEXT类型的列)做了许多修改,可以使用 ALTER TABLE tbl_name OPTIMIZE PARTITION来收回没有使用的空间,并整理分区数据文件的碎片。如:ALTER TABLE tbl_name OPTIMIZE PARTITION p2,p3;

3. 分析分区:读取并保存分区的键分布,如:ALTER TABLE tbl_name ANALYZE PARTITION p2,p3;

4. 检查分区:检查分区中的数据或索引是否已经被破坏,如:ALTER TABLE tbl_name CHECK PARTITION p2,p3;

5. 修补分区:修补被破坏的分区,如:ALTER TABLE tbl_name REPAIR PARTITION p2,p3;

十、查看分区信息

1. 查看分区信息:select * from information_schema.partitions where table_schema='arch1' and table_name = 'tbl_test' G;

2. 查看分区上的数据:select * from tbl_test partition(p0);

3. 查看MySQL会操作的分区:explain partitions select * from tbl_test where uuid = 2;

十一、 局限性

1. 最大分区数目不能超过1024,一般建议对单表的分区数不要超过50个。

2. 如果含有唯一索引或者主键,则分区列必须包含在所有的唯一索引或者主键在内。

3. 不支持外键。

4. 不支持全文索引,对分区表的分区键创建索引,那么这个索引也将被分区。

5. 按日期进行分区很合适,因为很多日期函数可以用。但是对字符串来说合适的分区函数不太多。

6. 只有RANGE和LIST分区能进行子分区,HASH和KEY分区不能进行子分区。

7. 临时表不能被分区。

8. 分区表对于单条记录的查询没有优势。

9. 要注意选择分区的成本,没插入一行数据都需要按照表达式筛选插入的分区。

10. 分区字段尽量不要可以为null

MySQL innodb引擎深入讲解

表空间(ibd文件),一个MySQL实例可以对应多个表空间,用于存储记录,索引等数据。

段,分为数据段、索引段、回滚段,innodb是索引组织表,数据段就是B+Tree的叶子节点,索引段为非叶子节点,段用来管理多个区。

区,表空间的单元结构,每个区的大小为1M,默认情况下,innodb存储引擎页大小为16K,即一个区中一共有64个连续的页。

页,是innodb存储引擎磁盘管理的最小单元,每个页的大小为16K,为了保证页的连续性,innodb存储引擎每次从磁盘申请4~5个区。

行,innodb存储引擎数据是按行进行存储的。Trx_id 最后一次事务操作的id、roll_pointer滚动指针。

i nnodb的内存结构 ,由Buffer Pool、Change Buffer和Log Buffer组成。

Buffer Pool : 缓冲池是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时,先操作缓冲池中的数据(若缓冲池么有数据,则从磁盘加载并缓存),然后再以一定频率刷新磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以page页为单位,底层采用链表数据结构管理page,根据状态,将page分为三种类型:

1、free page 即空闲page,未被使用。

2、clean page 被使用page,数据没有被修改过。

3、dirty page 脏页,被使用page,数据被修改过,这个page当中的数据和磁盘当中的数据 不一致。说得简单点就是缓冲池中的数据改了,磁盘中的没改,因为还没刷写到磁盘。

Change Buffer :更改缓冲区(针对于非唯一二级索引页),在执行DML语句时,如果这些数据page没有在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在更改缓冲区Change Buffer中,在未来数据被读取时。再将数据合并恢复到Buffer Pool中,再将合并后的数据刷新到磁盘中。

二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引页,同样,删除和更新可能会影响索引树中不相邻的二级索引页。如果每一次都操作磁盘,会造成大量磁盘IO,有了Change Buffer之后,我们可以在缓冲池中进行合并处理,减少磁盘IO。

Adaptive Hash Index: 自适应hash索引,用于优化对Buffer Pool数据的查询,InnoDB存储引擎会监控对表上各索引页的查询,如果观察到hash索引可以提升速度,则建立hash索引,称之为自适应hash索引。无需人工干预,系统根据情况自动完成。

参数:innodb_adaptive_hash_index

Log Buffer: 日志缓冲区,用来保存要写入到磁盘中的log日志数据(redo log、undo log),默认大小为16M,日志缓冲区的日志会定期刷新到磁盘中,如果需要更新,插入或删除许多行的事务,增加日志缓冲区的大小可以节省磁盘IO。

参数: innodb_log_buffer_size 缓冲区大小

innodb_flush_log_at_trx_commit 日志刷新到磁盘时机

innodb_flush_log_at_trx_commit=1 表示日志在每次事务提交时写入并刷新到磁盘

2 表示日志在每次事务提交后写入,并每秒刷新到磁盘一次

0 表示每秒将日志写入并刷新到磁盘一次。

InnoDB 的磁盘结构,由系统表空间(ibdata1),独立表空间(*.ibd),通用表空间,撤销表空间(undo tablespaces), 临时表空间(Temporary Tablespaces), 双写缓冲区(Doublewrite Buffer files), 重做日志(Redo Log).

系统表空间(ibdata1): 系统表空间是更改缓冲区的存储区域,如果表是在系统表空间而不是每个表文件或者通用表空间中创建的,它也可能包含表和索引数据。

参数为: innodb_data_file_path

独立表空间(*.ibd): 每个表的文件表空间包含单个innodb表的数据和索引,并存储在文件系 统上的单个数据文件中。 参数: innodb_file_per_table

通用表空间: 需要通过create tablespace 语法创建,创建表时 可以指定该表空间。

create tablespace xxx add datafile 'file_name' engine=engine_name

create table table_name .... tablespace xxx

撤销表空间(undo tablespaces): MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16K,undo_001,undo_002),用于存储undo log 日志

临时表空间(Temporary Tablespaces): innodb使用会话临时表空和全局表空间,存储用 户创建的临时表等数据。

双写缓冲区(Doublewrite Buffer files): innodb引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入缓冲区文件中,便于系统异常时恢复数据。

重做日志(Redo Log): 是用来实现事务的持久性,该日志文件由两部分组成,重做日志缓冲区(redo log buffer)以及重做日志文件(redo log),前者是在内存中,后者在磁盘中,当事务提交之后会把修改信息都会存储到该日志中,用于在刷新脏页到磁盘时,发送错误时,进行数据恢复使用。以循环方式写入重做日志文件,涉及两个文件ib_logfile0,ib_logfile1。

那内存结构中的数据是如何刷新到磁盘中的? 在MySQL中有4个线程负责刷新日志到磁盘。

1、Master Thread, mysql核心后台线程,负责调度其它线程,还负责将缓冲池中的数据异 步刷新到磁盘中,保持数据的一致性,还包括脏页的刷新,合并插入缓冲、undo页的回 收。

2、IO Thread,在innodb存储引擎中大量使用了AIO来处理IO请求,这样可以极大地提高数 据库的性能,而IO Thead主要负责这些IO请求的回调。

4个读线程 Read thread负责读操作

4个写线程write thread负责写操作

1个Log thread线程 负责将日志缓冲区刷新到磁盘

1个insert buffer线程 负责将写入缓冲区内容刷新到磁盘

3、Purge Thread,主要用于回收事务已经提交了的undo log,在事务提交之后,undo log 可能不用了,就用它来回收。

4、Page Cleaner Thread, 协助Master Thread 刷新脏页到磁盘的线程,它可以减轻主线程 的压力,减少阻塞。

事务就是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失效。

事务的4大特性分为:

如何保证事务的4大特性,原子性,一致性和持久性是由innodb存储引擎底层的两份日志来保证的,分别是redo log和undo log。对于隔离性是由锁机制和MVCC(多版本并发控制)来实现的。

redo log,称为重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。该日志文件由两部分组成: 重做日志缓冲redo log buffer及重做日志文件redo log file,前者是在内存中,后者是在磁盘中,当事务提交之后会把所有修改信息都存到该日志文件中,用于在刷新脏页到磁盘,发送错误时,进行数据的恢复使用,从而保证事务的持久性。

具体的操作流程是:

1、客户端发起事务操作,包含多条DML语句。首先去innodb中的buffer pool中的数据页去查找有没有我们要更新的这些数据,如果没有则通过后台线程从磁盘中加载到buffer pool对应的数据页中,然后就可以在缓冲池中进行数据操作了。

2、此时缓冲池中的数据页发生了变更,还没刷写到磁盘,这个数据页称为脏页。脏页不是实时刷新到磁盘的,而是根据你配置的刷写策略进行刷写到磁盘的(innodb_flush_log_at_trx_commit,0,1,2三个值)。如果脏页在往磁盘刷新的时候出现了故障,会丢失数据,导致事务的持久性得不到保证。为了避免这种现象,当对缓冲池中的数据进行增删改操作时,会把增删改记录到redo log buffer当中,redo log buffer会把数据页的物理变更持久化到磁盘文件中(ib_logfile0/ib_logfile1)。如果脏页刷新失败,就可以通过这两个日志文件进行恢复。

undo log,它是用来解决事务的原子性的,也称为回滚日志。用于记录数据被修改前的信息,作用包括:提供回滚和MVCC多版本并发控制。

undo log和redo log的记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录,当update一条记录时,它记录一条对应相反的update记录,当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

undo log销毁: undo log 在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些日子可能用于MVCC。

undo log存储: undo log 采用段的方式进行管理和记录,存放在前面介绍的rollback segment回滚段中,内部包含1024个undo log segment。

mvcc(multi-Version Concurrency Control),多版本并发控制,指维护一个数据的多个版本,使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能,MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段,undo log日志、readView。

read committed 每次select 都生成一个快照读

repeatable read 开启事务后第一个select语句才是快照读的地方

serializable 快照读会退化为当前读。

mvcc的实现原理

DB_TRX_ID: 最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID

DB_ROLL_PTR: 回滚指针,指向这条记录的上一个版本,用于配合undo log,指向上一个 版本

DB_ROW_ID: 隐藏主键,如果表结构没有指定主键,将会生成该隐藏字段。

m_ids当前活跃的事务ID集合

min_trx_id: 最小活跃事务id

max_trx_id: 预分配事务ID,当前最大事务id+1,因为事务id是自增的

creator_trx_id: ReadView创建者的事务ID

版本链数据访问规则:

trx_id: 表示当前的事务ID

1、trx_id == creator_trx_id? 可以访问读版本--成立的话,说明数据是当前这个事务更改的

2、trx_id 成立,说明数据已经提交了。

3、trx_idmax_trx_id?不可用访问读版本- 成立的话,说明该事务是在ReadView生成后才开启的。

4、min_trx_id

mysql 如何分配内存

我们仍然使用两个会话,一个会话 run,用于运行主 SQL;另一个会话 ps,用于进行 performance_schema 的观察:

主会话线程号为 29,

将 performance_schema 中的统计量重置,

临时表的表大小限制取决于参数  tmp_table_size 和 max_heap_table_size 中较小者,我们实验中以设置 max_heap_table_size 为例。

我们将会话级别的临时表大小设置为 2M(小于上次实验中临时表使用的空间),执行使用临时表的 SQL:

查看内存的分配记录:

会发现内存分配略大于 2M,我们猜测临时表会比配置略多一点消耗,可以忽略。

查看语句的特征值:

可以看到语句使用了一次需要落磁盘的临时表。

那么这张临时表用了多少的磁盘呢?

我们开启 performance_schema 中 waits 相关的统计项:

重做实验,略过。

再查看 performance_schema 的统计值:

可以看到几个现象:

1. 临时表空间被写入了 7.92MiB 的数据。

2. 这些数据是语句写入后,慢慢逐渐写入的。

来看看这些写入操作的特征,该方法我们在 实验 03 使用过:

可以看到写入的线程是 page_clean_thread,是一个刷脏操作,这样就能理解数据为什么是慢慢写入的。

也可以看到每个 IO 操作的大小是 16K,也就是刷数据页的操作。

结论:

我们可以看到,

1. MySQL 会基本遵守 max_heap_table_size 的设定,在内存不够用时,直接将表转到磁盘上存储。

2. 由于引擎不同(内存中表引擎为 heap,磁盘中表引擎则跟随 internal_tmp_disk_storage_engine 的配置),本次实验写磁盘的数据量和 实验 05 中使用内存的数据量不同。

3. 如果临时表要使用磁盘,表引擎配置为 InnoDB,那么即使临时表在一个时间很短的 SQL 中使用,且使用后即释放,释放后也会刷脏页到磁盘中,消耗部分 IO。

mysql内存分配最小单元是多少,为什么命名varchar类型的时候,长度最好是2的N次方

(1) 10*1024*1024*1024

(2)其实长度最好的是(2^n)-1

因为计算机是二进制计算的,1 bytes = 8 bit ,一个字节最多可以代表的数据长度是2的8次方 11111111 在计算机中也就是-128到127

而varchar类型存储变长字段的字符类型,当存储的字符串长度小于255字节时,其需要1字节的空间,当大于255字节时,需要2字节的空间。

使用2 ^ n长度是更好的磁盘或内存块对齐。对齐块更快。今天“块”的大小更大,内存和磁盘足够快,可以忽略对齐,对于非常大的块来说是非常重要的。

所以使用(2^n)-1 可以更好的利用磁盘空间和内存,使数据库可以在最大限度内存储更多的数据

MySQL 数据表优化设计(三):CHAR 和 VARCHAR 怎么选?

VARCHAR 和 CHAR 是两种主要的字符串类型,用于存储字符。不幸的是,由于实现的方式依赖于存储引擎,因此很难解释这些字符串在磁盘和内存中如何存储,除了除了常用的 InnoDB 和 MyISAM 外,假设你使用了其他存储引擎,应当仔细阅读存储引擎的文档。

VARCHAR 存储可变长度的字符串,也是最常用的字符数据类型。相比固定长度的类型,VARCHAR 所需的存储空间更小,它会尽可能少地使用存储空间(例如,短的字符串占据的空间)。对于 MyISAM 来说,如果创建表的时候指定了 ROW_FORMAT=FIXED 的话,那么会使用固定的空间存储字段而导致空间浪费。VARCHAR 使用1-2个额外的字节存储字符串的长度:当最大长度低于255字节的时候使用1个字节,如果更多的话就使用2个字节。因此,拉丁字符集的 VARCHAR(10)会使用11个字节的存储空间,而 VARCHAR(1000)则会使用1002个字节的存储空间。

VARCHAR 由于能够节省空间,因此可以改善性能。但是,由于长度可变,当更新数据表的时候数据行的存储空间会变化,这一定程度上会带来额外的开销。如果数据行的长度导致原有的存储位置无法存放,那么不同的存储引擎会做不同的处理。例如 MyISAM 可能产生数据行的碎片,而 InnoDB 需要进行磁盘分页来存放更新后的数据行。

通常,如果最大的列长度远远高于平均长度的话(例如可选的备注字段),使用 VARCHAR 是划算的,同时如果更新的频次很低,那么碎片化也不会是一个问题。需要注意的是,如果使用的是 UTF-8字符集,则实际存储的字节长度是根据字符定的。对于中文,推荐的存储字符集是 utf8mb4。

CHAR 类型的长度是固定的,MySQL 会对每个字段分配足够的存储空间。 存储CHAR 类型值的时候,MySQL 会移除后面多出来的空字符 。值是使用空字符进行对齐以便进行比较。对于短的字符串来说,使用 CHAR 更有优势,而如果所有的值的长度几乎一致的话,就可以使用 CHAR。例如存储用户密码的MD5值时使用 CHAR 就更合适,这是因为 MD5的长度总是固定的。同时,对于字段值经常改变的数据类型来说,CHAR 相比 VARCHAR 也更有优势,因为 CHAR 不会产生碎片。对于很短的数据列,使用 CHAR 比 VARCHAR更高效,例如使用CHAR(1)存储逻辑值的 Y 和 N,这种情况下只需要1个字节,而 VARCHAR 需要2个字节。

对于移除空字符这个特性会感觉奇怪,我们举个例子:

按上面的结果插入数据表后,string2中的前置空格不会移除,但使用 CHAR 类型存储时,string3尾随空格会被移除,使用 SQL 查询结果来检验一下:

得出来的结果如下,可以看到 CHAR 类型的 string3后面的空格被移除了,而 VARCHAR类型的没有。这种情况大多数时候不会有什么问题,实际在应用中也经常会使用 trim 函数移除两端的空字符,但是如果确实需要存储空格的时候,那就需要注意不要选择使用 CHAR 类型:

数据如何存储是由存储引擎决定的,而且存储引擎处理固定长度和可变长度的数据的方式并不相同。Memory 引擎使用固定大小的行,因此它需要分配最大可能的存储空间——即便数据长度是可变的。但是,对于字符串的对齐和空字符截断是由 MySQL 服务端完成的,因此所有存储引擎都是一样的。

与 CHAR 和 VARCHAR 相似的是 BINARY和 VARBINARY,用于存储二进制字节字符,BINARY 的对齐使用字符0的字节值来对齐,并且再获取值的时候不会截断。如果需要使用字符的字节值而不是字符的话,使用 BINARY 会更高效,这是因为比较时,一方面不需要考虑大小写,另一方面是MySQL一次只比较一个字节。


网页名称:mysql怎么分配空间,mysql内存分配方式
标题URL:http://chengdu.cdxwcx.cn/article/dsigpjh.html