小编给大家分享一下Python数据处理之Sympy如何实现解方程,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
创新互联专注于眉山网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供眉山营销型网站建设,眉山网站制作、眉山网页设计、眉山网站官网定制、小程序定制开发服务,打造眉山网络公司原创品牌,更为您提供眉山网站排名全网营销落地服务。官方教程
https://docs.sympy.org/latest/tutorial/solvers.html
(一)求解多元一次方程-solve()
1.说明:
解多元一次方程可以使用solve(),在sympy里,等式是用Eq()来表示,
例如:2x=42x=4 表示为:Eq(x*2, 4)
2.源代码:
""" 解下列二元一次方程 2x-y=3 3x+y=7 """ # 导入模块 from sympy import * # 将变量符号化 x = Symbol('x') y = Symbol('y') z = Symbol('z') # 解一元一次方程 expr1 = x*2-4 r1 = solve(expr1, x) r1_eq = solve(Eq(x*2, 4), x) print("r1:", r1) print("r1_eq:", r1_eq) # 解二元一次方程 expr2 = [2*x-y-3, 3*x+y-7] r2 = solve(expr2, [x, y]) print("r1:", r2) # 解三元一次方程 f1 = x+y+z-2 f2 = 2*x-y+z+1 f3 = x+2*y+2*z-3 r3 = solve([f1, f2, f3], [x, y, z]) print("r3:", r3)
3.输出:
(二)解线性方程组-linsolve()
1.说明:
在sympy中,解线性方程组有三种形式:
默认等式为0的形式:linsolve(eq, [x, y, z])
矩阵形式:linsolve(eq, [x, y, z])
增广矩阵形式:linsolve(A,b, x, y, z)
2.源代码:
""" x+y+z-2=0 2x-y+z+1=0 x+2y+2z-3=0 """ from sympy import * x, y, z = symbols("x y z") # 默认等式为0的形式 print("======默认等式为0的形式 =======") eq = [x+y+z-2, 2*x-y+z+1, x+2*y+2*z-3] result = linsolve(eq, [x, y, z]) print(result) print(latex(result)) # 矩阵形式 print("======矩阵形式 =======") eq = Matrix(([1, 1, 1, 2], [2, -1, 1, -1], [1, 2, 2, 3])) result = linsolve(eq, [x, y, z]) print(result) print(latex(result)) # 增广矩阵形式 print("======增广矩阵形式 =======") A = Matrix([[1, 1, 1], [2, -1, 1], [1, 2, 2]]) b = Matrix([[2], [-1], [3]]) system = A, b result = linsolve(system, x, y, z) print(result) print(latex(result))
3.输出:
(三)解非线性方程组-nonlinsolve()
1.说明:
nonlinsolve()用于求解非线性方程组,例如二次方,三角函数,,,等方程
2.源代码:
""" x**2+y**2-2=0 x**3+y**3=0 """ import sympy as sy x, y = sy.symbols("x y") eq = [x**2+y**3-2, x**3+y**3] result = sy.nonlinsolve(eq, [x, y]) print(result) print(sy.latex(result))
3.输出:
(四)求解微分方程-dsolve()
1.说明:
求解微分方程使用dsolve(),注意:
f = symbols('f', cls=Function)的作用是声明f()是一个函数。
2.源代码:
from sympy import * # 初始化 x = symbols('x') f = symbols('f', cls=Function) # 表达式 expr1 = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x)) # 求解微分方程 r1 = dsolve(expr1, f(x)) print(r1) print("原式:", latex(expr1)) print("求解后:", latex(r1))
3.输出:
原式:
f(x)−2ddxf(x)+d2dx2f(x)=sin(x) f(x)−2ddxf(x)+d2dx2f(x)=sin(x)
解微分后:
f(x)=(C1+C2x)ex+cos(x)2 f(x)=(C1+C2x)ex+cos(x)2
以上是“Python数据处理之Sympy如何实现解方程”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!