成都网站建设设计

将想法与焦点和您一起共享

opencv如何实现图像腐蚀和图像膨胀-创新互联

创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!

站在用户的角度思考问题,与客户深入沟通,找到海口网站设计与海口网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都做网站、成都网站设计、企业官网、英文网站、手机端网站、网站推广、主机域名虚拟主机、企业邮箱。业务覆盖海口地区。

小编给大家分享一下opencv如何实现图像腐蚀和图像膨胀,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!

语言:python+opencv

为什么使用图像腐蚀和图像膨胀

如图,使用图像腐蚀进行去噪,但是为压缩噪声。
对腐蚀过的图像,进行膨胀处理,可以去除噪声,并保持原样形状。

opencv如何实现图像腐蚀和图像膨胀

图像腐蚀

腐蚀主要针对的是二值图像,如只有0和1两个值,
两个输入对象:1原始二值图像,2卷积核
使用卷积核遍历原始二值图像,如果卷积核对应的元素值均为1,其值才为1,否则为0。如图,红色为卷积核。

opencv如何实现图像腐蚀和图像膨胀

腐蚀后的结果示意图见下面,效果是将边缘抹掉一部分。

opencv如何实现图像腐蚀和图像膨胀

使用方法:erode 中文翻译:侵蚀

处理结果=cv2.erode(原始图像src,卷积核kernel,迭代次数iterations)

卷积核kernel:一般为正方形数组

如:k=np.ones((5,5),np.uint8)

迭代次数iterations:腐蚀次数,默认1

import cv2
import numpy as np
o=cv2.imread("erode.bmp",cv2.IMREAD_UNCHANGED)
k=np.ones((5,5),np.uint8)
r=cv2.erode(o,k,iterations=10)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

分享题目:opencv如何实现图像腐蚀和图像膨胀-创新互联
本文链接:http://chengdu.cdxwcx.cn/article/dphees.html