成都网站建设设计

将想法与焦点和您一起共享

包含python函数收纳的词条

python很多函数记不住怎么办

Python中很多函数记不住的解决方法:

十载的南岳网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网整合营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整南岳建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“南岳网站设计”,“南岳网站推广”以来,每个客户项目都认真落实执行。

1、不用记住所有的函数;

2、记住一些经常使用的函数;

3、其他不经常使用的函数用到再去查就可以;

4、经常温习就可以多记住一些。

更多Python知识,请关注:Python自学网!!

Python的函数参数总结

import math

a = abs

print(a(-1))

n1 = 255

print(str(hex(n1)))

def my_abs(x):

# 增加了参数的检查

if not isinstance(x, (int, float)):

raise TypeError('bad operand type')

if x = 0:

return x

else:

return -x

print(my_abs(-3))

def nop():

pass

if n1 = 255:

pass

def move(x, y, step, angle=0):

nx = x + step * math.cos(angle)

ny = y - step * math.sin(angle)

return nx, ny

x, y = move(100, 100, 60, math.pi / 6)

print(x, y)

tup = move(100, 100, 60, math.pi / 6)

print(tup)

print(isinstance(tup, tuple))

def quadratic(a, b, c):

k = b * b - 4 * a * c

# print(k)

# print(math.sqrt(k))

if k 0:

print('This is no result!')

return None

elif k == 0:

x1 = -(b / 2 * a)

x2 = x1

return x1, x2

else:

x1 = (-b + math.sqrt(k)) / (2 * a)

x2 = (-b - math.sqrt(k)) / (2 * a)

return x1, x2

print(quadratic(2, 3, 1))

def power(x, n=2):

s = 1

while n 0:

n = n - 1

s = s * x

return s

print(power(2))

print(power(2, 3))

def enroll(name, gender, age=8, city='BeiJing'):

print('name:', name)

print('gender:', gender)

print('age:', age)

print('city:', city)

enroll('elder', 'F')

enroll('android', 'B', 9)

enroll('pythone', '6', city='AnShan')

def add_end(L=[]):

L.append('end')

return L

print(add_end())

print(add_end())

print(add_end())

def add_end_none(L=None):

if L is None:

L = []

L.append('END')

return L

print(add_end_none())

print(add_end_none())

print(add_end_none())

def calc(*nums):

sum = 0

for n in nums:

sum = sum + n * n

return sum

print(calc(1, 2, 3))

print(calc())

l = [1, 2, 3, 4]

print(calc(*l))

def foo(x, y):

print('x is %s' % x)

print('y is %s' % y)

foo(1, 2)

foo(y=1, x=2)

def person(name, age, **kv):

print('name:', name, 'age:', age, 'other:', kv)

person('Elder', '8')

person('Android', '9', city='BeiJing', Edu='人民大学')

extra = {'city': 'Beijing', 'job': 'Engineer'}

person('Jack', 24, **extra)

def person2(name, age, *, city, job):

print(name, age, city, job)

person2('Pthon', 8, city='BeiJing', job='Android Engineer')

def person3(name, age, *other, city='BeiJing', job='Android Engineer'):

print(name, age, other, city, job)

person3('Php', 18, 'test', 1, 2, 3)

person3('Php2', 28, 'test', 1, 2, 3, city='ShangHai', job='Pyhton Engineer')

def test2(a, b, c=0, *args, key=None, **kw):

print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'key=', key, 'kw =', kw)

test2(1, 2, 3, 'a', 'b', 'c', key='key', other='extra')

args = (1, 2, 3, 4)

kw = {'d': 99, 'x': '#'}

test2(*args, **kw)

python怎样接收参数

Python中函数参数的传递是通过“赋值”来传递的,函数参数的接收传递有四种形式:

1. F(arg1,arg2,...)

2. F(arg2=,arg3=...)

3. F(*arg1)

4. F(**arg1)

第1

种方式是最“传统”的方式:一个函数可以定义不限个数参数,参数(形式参数)放在跟在函数名后面的小括号中,各个参数之间以逗号隔开。用这种方式定义的函数在调用的时候也必须在函数名后的小括号中提供相等个数的值(实际参数),不能多也不能少,而且顺序还必须相同。也就是说形参和实参的个数必须一致,而且想给形参1的值必须是实参中的第一位,形参与实参之间是一一对应的关系,即“形参1=实参1

形参2=实参2...”。很明显这是一种非常不灵活的形式。比如:"def addOn(x,y): return x +

y",这里定义的函数addOn,可以用addOn(1,2)的形式调用,意味着形参x将取值1,主将取值2。addOn(1,2,3)和addOn

(1)都是错误的形式。

第2种方式比第1种方式好一点,在定义的时候已经给各个形参定义了默认值。因此,在调用这种函数时,如果没有给对应的形式参数传递实参,那么这个形参就将使用默认值。比如:“def

addOn(x=3,y=5): return x +

y”,那么addOn(6,5)的调用形式表示形参x取值6,y取值5。此外,addOn(7)这个形式也是可以的,表示形参x取值7,y取默认值5。这时候会出现一个问题,如果想让x取默认值,用实参给y赋值怎么办?前面两种调用形式明显就不行了,这时就要用到Python中函数调用方法的另一大绝招

──关健字赋值法。可以用addOn(y=6),这时表示x取默认值3,而y取值6。这种方式通过指定形式参数可以实现可以对形式参数进行“精确攻击”,一个副带的功能是可以不必遵守形式参数的前后顺序,比如:addOn(y=4,x=6),这也是可以的。这种通过形式参数进行定点赋值的方式对于用第1种方式定义的函数也是适用的。

上面两种方式定义的形式参数的个数都是固定的,比如定义函数的时候如果定义了5个形参,那么在调用的时候最多也只能给它传递5个实参。但是在实际编程中并不能总是确定一个函数会有多少个参数。第3种方式就是用来应对这种情况的。它以一个*加上形参名的方式表示,这个函数实际参数是不一定的,可以是零个,也可以是N个。不管是多少个,在函数内部都被存放在以形参名为标识符的tuple中。比如:

对这个函数的调用addOn() addOn(2) addOn(3,4,5,6)等等都是可以的。

与第3种方式类似,形参名前面加了两个*表示,参数在函数内部将被存放在以形式名为标识符的dictionary中。这时候调用函数必须采用key1=value1、key2=value2...的形式。比如:

1. def addOn(**arg):

2. sum = 0

3. if len(arg) == 0: return 0

4. else:

5. for x in arg.itervalues():

6. sum += x

7. return sum

那么对这个函数的调用可以用addOn()或诸如addOn(x=4,y=5,k=6)等的方式调用。

上面说了四种函数形式定义的方式以及他们的调用方式,是分开说的,其实这四种方式可以组合在一起形成复杂多样的形参定义形式。在定义或调用这种函数时,要遵循以下规则:

1. arg=必须在arg后

2. *arg必须在arg=后

3. **arg必须在*arg后

在函数调用过程中,形参赋值的过程是这样的:

首先按顺序把“arg”这种形式的实参给对应的形参

第二,把“arg=”这种形式的实参赋值给形式

第三,把多出来的“arg”这种形式的实参组成一个tuple给带一个星号的形参

第四,把多出来的“key=value”这种形式的实参转为一个dictionary给带两个星号的形参。

听起来好复杂,实际是是很简单的。很直观,来看例子:

1. def test(x,y=5,*a,**b):

2. print x,y,a,b

就这么一个简单函数,来看看下面对这个函数调用会产生什么结果:

test(1) === 1 5 () {}

test(1,2) === 1 2 () {}

test(1,2,3) === 1 2 (3,) {}

test(1,2,3,4) === 1 2 (3,4)

test(x=1) === 1 5 () {}

test(x=1,y=1) === 1 1 () {}

test(x=1,y=1,a=1) === 1 1 () {'a':1}

test(x=1,y=1,a=1,b=1) === 1 1 () {'a':1,'b':1}

test(1,y=1) === 1 1 () {}

test(1,2,y=1) === 出错,说y给赋了多个值

test(1,2,3,4,a=1) === 1 2 (3,4) {'a':1}

test(1,2,3,4,k=1,t=2,o=3) === 1 2 (3,4) {'k':1,'t':2,'o':3}

Python的函数都有哪些?

Python 函数

函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段。

函数能提高应用的模块性,和代码的重复利用率。你已经知道Python提供了许多内建函数,比如print()。但你也可以自己创建函数,这被叫做用户自定义函数。

定义一个函数

你可以定义一个由自己想要功能的函数,以下是简单的规则:

函数代码块以 def 关键词开头,后接函数标识符名称和圆括号()。

任何传入参数和自变量必须放在圆括号中间。圆括号之间可以用于定义参数。

函数的第一行语句可以选择性地使用文档字符串—用于存放函数说明。

函数内容以冒号起始,并且缩进。

return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回 None。

语法

def functionname( parameters ):   "函数_文档字符串"

function_suite

return [expression]

默认情况下,参数值和参数名称是按函数声明中定义的顺序匹配起来的。

实例

以下为一个简单的Python函数,它将一个字符串作为传入参数,再打印到标准显示设备上。

实例(Python 2.0+)

def printme( str ):   "打印传入的字符串到标准显示设备上"

print str

return

函数调用

定义一个函数只给了函数一个名称,指定了函数里包含的参数,和代码块结构。

这个函数的基本结构完成以后,你可以通过另一个函数调用执行,也可以直接从Python提示符执行。

如下实例调用了printme()函数:

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

# 定义函数def printme( str ):   "打印任何传入的字符串"

print str

return

# 调用函数printme("我要调用用户自定义函数!")printme("再次调用同一函数")

以上实例输出结果:

我要调用用户自定义函数!再次调用同一函数

参数传递

在 python 中,类型属于对象,变量是没有类型的:

a=[1,2,3]

a="Runoob"

以上代码中,[1,2,3] 是 List 类型,"Runoob" 是 String 类型,而变量 a 是没有类型,她仅仅是一个对象的引用(一个指针),可以是 List 类型对象,也可以指向 String 类型对象。

可更改(mutable)与不可更改(immutable)对象

在 python 中,strings, tuples, 和 numbers 是不可更改的对象,而 list,dict 等则是可以修改的对象。

不可变类型:变量赋值 a=5 后再赋值 a=10,这里实际是新生成一个 int 值对象 10,再让 a 指向它,而 5 被丢弃,不是改变a的值,相当于新生成了a。

可变类型:变量赋值 la=[1,2,3,4] 后再赋值 la[2]=5 则是将 list la 的第三个元素值更改,本身la没有动,只是其内部的一部分值被修改了。

python 函数的参数传递:

不可变类型:类似 c++ 的值传递,如 整数、字符串、元组。如fun(a),传递的只是a的值,没有影响a对象本身。比如在 fun(a)内部修改 a 的值,只是修改另一个复制的对象,不会影响 a 本身。

可变类型:类似 c++ 的引用传递,如 列表,字典。如 fun(la),则是将 la 真正的传过去,修改后fun外部的la也会受影响

python 中一切都是对象,严格意义我们不能说值传递还是引用传递,我们应该说传不可变对象和传可变对象。

python 传不可变对象实例

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

def ChangeInt( a ):    a = 10

b = 2ChangeInt(b)print b # 结果是 2

实例中有 int 对象 2,指向它的变量是 b,在传递给 ChangeInt 函数时,按传值的方式复制了变量 b,a 和 b 都指向了同一个 Int 对象,在 a=10 时,则新生成一个 int 值对象 10,并让 a 指向它。

传可变对象实例

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

# 可写函数说明def changeme( mylist ):   "修改传入的列表"

mylist.append([1,2,3,4])

print "函数内取值: ", mylist

return

# 调用changeme函数mylist = [10,20,30]changeme( mylist )print "函数外取值: ", mylist

实例中传入函数的和在末尾添加新内容的对象用的是同一个引用,故输出结果如下:

函数内取值:  [10, 20, 30, [1, 2, 3, 4]]函数外取值:  [10, 20, 30, [1, 2, 3, 4]]

参数

以下是调用函数时可使用的正式参数类型:

必备参数

关键字参数

默认参数

不定长参数

必备参数

必备参数须以正确的顺序传入函数。调用时的数量必须和声明时的一样。

调用printme()函数,你必须传入一个参数,不然会出现语法错误:

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

#可写函数说明def printme( str ):   "打印任何传入的字符串"

print str

return

#调用printme函数printme()

以上实例输出结果:

Traceback (most recent call last):

File "test.py", line 11, in module

printme()TypeError: printme() takes exactly 1 argument (0 given)

关键字参数

关键字参数和函数调用关系紧密,函数调用使用关键字参数来确定传入的参数值。

使用关键字参数允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。

以下实例在函数 printme() 调用时使用参数名:

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

#可写函数说明def printme( str ):   "打印任何传入的字符串"

print str

return

#调用printme函数printme( str = "My string")

以上实例输出结果:

My string

下例能将关键字参数顺序不重要展示得更清楚:

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

#可写函数说明def printinfo( name, age ):   "打印任何传入的字符串"

print "Name: ", name

print "Age ", age

return

#调用printinfo函数printinfo( age=50, name="miki" )

以上实例输出结果:

Name:  mikiAge  50

默认参数

调用函数时,默认参数的值如果没有传入,则被认为是默认值。下例会打印默认的age,如果age没有被传入:

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

#可写函数说明def printinfo( name, age = 35 ):   "打印任何传入的字符串"

print "Name: ", name

print "Age ", age

return

#调用printinfo函数printinfo( age=50, name="miki" )printinfo( name="miki" )

以上实例输出结果:

Name:  mikiAge  50Name:  mikiAge  35

不定长参数

你可能需要一个函数能处理比当初声明时更多的参数。这些参数叫做不定长参数,和上述2种参数不同,声明时不会命名。基本语法如下:

def functionname([formal_args,] *var_args_tuple ):   "函数_文档字符串"

function_suite

return [expression]

加了星号(*)的变量名会存放所有未命名的变量参数。不定长参数实例如下:

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

# 可写函数说明def printinfo( arg1, *vartuple ):   "打印任何传入的参数"

print "输出: "

print arg1

for var in vartuple:      print var

return

# 调用printinfo 函数printinfo( 10 )printinfo( 70, 60, 50 )

以上实例输出结果:

输出:10输出:706050

匿名函数

python 使用 lambda 来创建匿名函数。

lambda只是一个表达式,函数体比def简单很多。

lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。

lambda函数拥有自己的命名空间,且不能访问自有参数列表之外或全局命名空间里的参数。

虽然lambda函数看起来只能写一行,却不等同于C或C++的内联函数,后者的目的是调用小函数时不占用栈内存从而增加运行效率。

语法

lambda函数的语法只包含一个语句,如下:

lambda [arg1 [,arg2,.....argn]]:expression

如下实例:

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

# 可写函数说明sum = lambda arg1, arg2: arg1 + arg2

# 调用sum函数print "相加后的值为 : ", sum( 10, 20 )print "相加后的值为 : ", sum( 20, 20 )

以上实例输出结果:

相加后的值为 :  30相加后的值为 :  40

return 语句

return语句[表达式]退出函数,选择性地向调用方返回一个表达式。不带参数值的return语句返回None。之前的例子都没有示范如何返回数值,下例便告诉你怎么做:

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

# 可写函数说明def sum( arg1, arg2 ):   # 返回2个参数的和."

total = arg1 + arg2

print "函数内 : ", total

return total

# 调用sum函数total = sum( 10, 20 )

以上实例输出结果:

函数内 :  30

变量作用域

一个程序的所有的变量并不是在哪个位置都可以访问的。访问权限决定于这个变量是在哪里赋值的。

变量的作用域决定了在哪一部分程序你可以访问哪个特定的变量名称。两种最基本的变量作用域如下:

全局变量

局部变量

全局变量和局部变量

定义在函数内部的变量拥有一个局部作用域,定义在函数外的拥有全局作用域。

局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。调用函数时,所有在函数内声明的变量名称都将被加入到作用域中。如下实例:

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*-

total = 0 # 这是一个全局变量# 可写函数说明def sum( arg1, arg2 ):   #返回2个参数的和."

total = arg1 + arg2 # total在这里是局部变量.

print "函数内是局部变量 : ", total

return total

#调用sum函数sum( 10, 20 )print "函数外是全局变量 : ", total

以上实例输出结果:

函数内是局部变量 :  30函数外是全局变量 :  0

python常用函数包有哪些?

一些python常用函数包:

1、Urllib3

Urllib3是一个 Python 的 HTTP 客户端,它拥有 Python 标准库中缺少的许多功能:

线程安全

连接池

客户端 SSL/TLS 验证

使用分段编码上传文件

用来重试请求和处理 HTTP 重定向的助手

支持 gzip 和 deflate 编码

HTTP 和 SOCKS 的代理支持

2、Six

six 是一个是 Python 2 和 3 的兼容性库。这个项目旨在支持可同时运行在 Python 2 和 3 上的代码库。它提供了许多可简化 Python 2 和 3 之间语法差异的函数。

3、botocore、boto3、s3transfer、awscli

Botocore是 AWS 的底层接口。Botocore是 Boto3 库(#22)的基础,后者让你可以使用 Amazon S3 和 Amazon EC2 一类的服务。Botocore 还是 AWS-CLI 的基础,后者为 AWS 提供统一的命令行界面。

S3transfer(#7)是用于管理 Amazon S3 传输的 Python 库。它正在积极开发中,其介绍页面不推荐人们现在使用,或者至少等版本固定下来再用,因为其 API 可能发生变化,在次要版本之间都可能更改。Boto3、AWS-CLI和其他许多项目都依赖s3transfer。

4、Pip

pip是“Pip Installs Packages”的首字母递归缩写。

pip很容易使用。要安装一个包只需pip install package name即可,而删除包只需pip uninstall package name即可。

最大优点之一是它可以获取包列表,通常以requirements.txt文件的形式获取。该文件能选择包含所需版本的详细规范。大多数 Python 项目都包含这样的文件。

如果结合使用pip与virtualenv(列表中的 #57),就可以创建可预测的隔离环境,同时不会干扰底层系统,反之亦然。

5、Python-dateutil

python-dateutil模块提供了对标准datetime模块的强大扩展。我的经验是,常规的Python datetime缺少哪些功能,python-dateutil就能补足那一块。

6、Requests

Requests建立在我们的 #1 库——urllib3基础上。它让 Web 请求变得非常简单。相比urllib3来说,很多人更喜欢这个包。而且使用它的最终用户可能也比urllib3更多。后者更偏底层,并且考虑到它对内部的控制级别,它一般是作为其他项目的依赖项。

7、Certifi

近年来,几乎所有网站都转向 SSL,你可以通过地址栏中的小锁符号来识别它。加了小锁意味着与该站点的通信是安全和加密的,能防止窃听行为。

8、Idna

根据其 PyPI 页面,idna提供了“对 RFC5891 中指定的应用程序中国际化域名(IDNA)协议的支持。”

IDNA的核心是两个函数:ToASCII和ToUnicode。ToASCII会将国际 Unicode 域转换为 ASCII 字符串。ToUnicode则逆转该过程。在IDNA包中,这些函数称为idna.encode()和idna.decode()

9、PyYAML

YAML是一种数据序列化格式。它的设计宗旨是让人类和计算机都能很容易地阅读代码——人类很容易读写它的内容,计算机也可以解析它。

PyYAML是 Python 的YAML解析器和发射器,这意味着它可以读写YAML。它会把任何 Python 对象写成YAML:列表、字典,甚至是类实例都包括在内。

10、Pyasn1

像上面的IDNA一样,这个项目也非常有用:

ASN.1 类型和 DER/BER/CER 编码(X.208)的纯 Python 实现

所幸这个已有数十年历史的标准有很多信息可用。ASN.1是 Abstract Syntax Notation One 的缩写,它就像是数据序列化的教父。它来自电信行业。也许你知道协议缓冲区或 Apache Thrift?这就是它们的 1984 年版本。

11、Docutils

Docutils是一个模块化系统,用来将纯文本文档处理为很多有用的格式,例如 HTML、XML 和 LaTeX 等。Docutils能读取reStructuredText格式的纯文本文档,这种格式是类似于 MarkDown 的易读标记语法。

12、Chardet

你可以用chardet模块来检测文件或数据流的字符集。比如说,需要分析大量随机文本时,这会很有用。但你也可以在处理远程下载的数据,但不知道用的是什么字符集时使用它。

13、RSA

rsa包是一个纯 Python 的 RSA 实现。它支持:

加密和解密

签名和验证签名

根据 PKCS#1 1.5 版生成密钥

它既可以用作 Python 库,也能在命令行中使用。

14、Jmespath

JMESPath,发音为“James path”,使 Python 中的 JSON 更容易使用。它允许你声明性地指定如何从 JSON 文档中提取元素。

15、Setuptools

它是用于创建 Python 包的工具。不过,其文档很糟糕。它没有清晰描述它的用途,并且文档中包含无效链接。最好的信息源是这个站点,特别是这个创建 Python 包的指南。

16、Pytz

像dateutils一样,这个库可帮助你处理日期和时间。有时候,时区处理起来可能很麻烦。幸好有这样的包,可以让事情变得简单些。

17、Futures

从 Python 3.2 开始,python 提供current.futures模块,可帮助你实现异步执行。futures 包是该库适用于 Python 2 的 backport。它不适用于 Python3 用户,因为 Python 3 原生提供了该模块。

18、Colorama

使用 Colorama,你可以为终端添加一些颜色:

更多Python知识请关注Python自学网

python常用函数

1、complex()

返回一个形如 a+bj 的复数,传入参数分为三种情况:

参数为空时,返回0j;参数为字符串时,将字符串表达式解释为复数形式并返回;参数为两个整数(a,b)时,返回 a+bj;参数只有一个整数 a 时,虚部 b 默认为0,函数返回 a+0j。

2、dir()

不提供参数时,返回当前本地范围内的名称列表;提供一个参数时,返回该对象包含的全部属性。

3、divmod(a,b)

a -- 代表被除数,整数或浮点数;b -- 代表除数,整数或浮点数;根据 除法运算 计算 a,b 之间的商和余数,函数返回一个元组(p,q) ,p 代表商 a//b ,q 代表余数 a%b。

4、enumerate(iterable,start=0)

iterable -- 一个可迭代对象,列表、元组序列等;start -- 计数索引值,默认初始为0‘该函数返回枚举对象是个迭代器,利用 next() 方法依次返回元素值,每个元素以元组形式存在,包含一个计数元素(起始为 start )和 iterable 中对应的元素值。


当前题目:包含python函数收纳的词条
转载来源:http://chengdu.cdxwcx.cn/article/dosohed.html