成都网站建设设计

将想法与焦点和您一起共享

pythonhog函数 python 函数

HOG算法什么意思

特征梯度直方图算法,现在非常流行的一种行人检测的算法,一般配合LBP和SVM分类器效果很好。你要想具体了解可以去WIKI 或者 navneet的网站看看专业解释。

目前创新互联已为1000+的企业提供了网站建设、域名、网页空间、网站托管维护、企业网站设计、武汉网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。

不过HOG函数已经集成在了OPENCV库里面,因此其实没有必要非要搞懂这个算法。。。

hog多尺度检测和单尺度检测有什么区别

hog描述子在opencv中为HOGDescriptor。

2. 可以调用该描述子setSVMDetector方法给用于对hog特征进行分类的svm模型的系数赋值,这里的参数为HOGDescriptor::getDefaultPeopleDetector()时表示采用系统默认的参数,因为这些参数是用很多图片训练而来的。

3. 对输入图片进行行人检测时由于图片的大小不一样,所以要用到多尺度检测。这里是用hog类的方法detectMultiScale。参数解释如下:

HOGDescriptor::detectMultiScale(const GpuMat img, vectorRect found_locations, doublehit_threshold=0, Size win_stride=Size(), Size padding=Size(), double scale0=1.05, int group_threshold=2)

该函数表示对输入的图片img进行多尺度行人检测 img为输入待检测的图片;found_locations为检测到目标区域列表;参数3为程序内部计算为行人目标的阈值,也就是检测到的特征到SVM分类超平面的距离;参数4为滑动窗口每次移动的距离。它必须是块移动的整数倍;参数5为图像扩充的大小;参数6为比例系数,即滑动窗口每次增加的比例;参数7为组阈值,即校正系数,当一个目标被多个窗口检测出来时,该参数此时就起了调节作用,为0时表示不起调节作用。

4.  最后对检测出来的目标矩形框,要采用一些方法处理,比如说2个目标框嵌套着,则选择最外面的那个框。

5.  因为hog检测出的矩形框比实际人体框要稍微大些,所以需要对这些矩形框大小尺寸做一些调整。

extractHOGFeatures

features = extractHOGFeatures(I);

[features,validPoints] = extractHOGFeatures(I,Points);

[_,visualization] = extractHOGFeatures(I,_);

[_] = extractHOGFeatures(_,Name,Value);

其中,I为3-D彩色图像或2-D灰度图像,features为1xN的HOG描述子向量,N为描述子的长度,该描述子是输入图像区域的局部形状信息编码。当指定Points(同extractFeatures函数输入Points)时,则获取指定点附近的HOG描述子,visualization表示可用于任何可视化的函数的输入参数,例如plot(visualization),Name为用一对单引号包含的字符串,Value为对应Name的值。

Name Value

'CellSize'HOG单元(HOG cell)大小,默认值为[8,8],为捕获大尺度空间信息,可以增加‘CellSize'的取值

’BlockSize'块中单元的大小,默认值为[2,2],当取值较大时将降低抑制局部亮度变化的能力,当取值较小时,能够抑制亮度变化

‘BlockOverlap'相邻块(block)之间的重叠HOG单元的个数,默认值为ceil(BlockSize/2),该参数只在从区域(region)获取HOG特征时有用。

’NumBins'方向直方图分段(orientation histogram bins)的数目,默认值为9,必须为正整数,如果想要获取精细的方向信息,该值可以设置大一些,但是将增加处理时间和HOG特征长度

‘UseSignedOrienation'默认值为false,当该值置为true时,方向直方图中所取方向的范围为[-180,180],若置为false,方向的取值范围为[0,180],此时,方向角度小于0的将统计如+180bins中,利用带符号的方向,可以区分区域中从light-to-dark和dark-to-light

如何线上部署用python基于dlib写的人脸识别算法

python使用dlib进行人脸检测与人脸关键点标记

Dlib简介:

首先给大家介绍一下Dlib

Dlib是一个跨平台的C++公共库,除了线程支持,网络支持,提供测试以及大量工具等等优点,Dlib还是一个强大的机器学习的C++库,包含了许多机器学习常用的算法。同时支持大量的数值算法如矩阵、大整数、随机数运算等等。

Dlib同时还包含了大量的图形模型算法。

最重要的是Dlib的文档和例子都非常详细。

Dlib主页:

这篇博客所述的人脸标记的算法也是来自Dlib库,Dlib实现了One Millisecond Face Alignment with an Ensemble of Regression Trees中的算法

这篇论文非常出名,在谷歌上打上One Millisecond就会自动补全,是CVPR 2014(国际计算机视觉与模式识别会议)上的一篇国际顶级水平的论文。毫秒级别就可以实现相当准确的人脸标记,包括一些半侧脸,脸很不清楚的情况,论文本身的算法十分复杂,感兴趣的同学可以下载看看。

Dlib实现了这篇最新论文的算法,所以Dlib的人脸标记算法是十分先进的,而且Dlib自带的人脸检测库也很准确,我们项目受到硬件所限,摄像头拍摄到的画面比较模糊,而在这种情况下之前尝试了几个人脸库,识别率都非常的低,而Dlib的效果简直出乎意料。

相对于C++我还是比较喜欢使用python,同时Dlib也是支持python的,只是在配置的时候碰了不少钉子,网上大部分的Dlib资料都是针对于C++的,我好不容易才配置好了python的dlib,这里分享给大家:

Dlib for python 配置:

因为是用python去开发计算机视觉方面的东西,python的这些科学计算库是必不可少的,这里我把常用的科学计算库的安装也涵盖在内了,已经安装过这些库的同学就可以忽略了。

我的环境是Ubuntu14.04:

大家都知道Ubuntu是自带python2.7的,而且很多Ubuntu系统软件都是基于python2.7的,有一次我系统的python版本乱了,我脑残的想把python2.7卸载了重装,然后……好像是提醒我要卸载几千个软件来着,没看好直接回车了,等我反应过来Ctrl + C 的时候系统已经没了一半了…

所以我发现想要搞崩系统,这句话比rm -rf 还给力…

sudo apt-get remove python2.71

首先安装两个python第三方库的下载安装工具,ubuntu14.04好像是预装了easy_install

以下过程都是在终端中进行:

1.安装pip

sudo apt-get install python-pip1

2.安装easy-install

sudo apt-get install python-setuptools1

3.测试一下easy_install

有时候系统环境复杂了,安装的时候会安装到别的python版本上,这就麻烦了,所以还是谨慎一点测试一下,这里安装一个我之前在博客中提到的可以模拟浏览器的第三方python库测试一下。

sudo easy_install Mechanize1

4.测试安装是否成功

在终端输入python进入python shell

python1

进入python shell后import一下刚安装的mechanize

import mechanize1

没有报错,就是安装成功了,如果说没有找到,那可能就是安装到别的python版本的路径了。

同时也测试一下PIL这个基础库

import PIL1

没有报错的话,说明PIL已经被预装过了

5.安装numpy

接下来安装numpy

首先需要安装python-dev才可以编译之后的扩展库

sudo apt-get install python-dev1

之后就可以用easy-install 安装numpy了

sudo easy_install numpy1

这里有时候用easy-install 安装numpy下载的时候会卡住,那就只能用 apt-get 来安装了:

sudo apt-get install numpy1

不推荐这样安装的原因就是系统环境或者说python版本多了之后,直接apt-get安装numpy很有可能不知道装到哪个版本去了,然后就很麻烦了,我有好几次遇到这个问题,不知道是运气问题还是什么,所以风险还是很大的,所以还是尽量用easy-install来安装。

同样import numpy 进行测试

python

import numpy1234

没有报错的话就是成功了

下面的安装过程同理,我就从简写了,大家自己每步别忘了测试一下

6.安装scipy

sudo apt-get install python-scipy1

7.安装matplotlib

sudo apt-get install python-matplotlib1

8.安装dlib

我当时安装dlib的过程简直太艰辛,网上各种说不知道怎么配,配不好,我基本把stackoverflow上的方法试了个遍,才最终成功编译出来并且导入,不过听说18.18更新之后有了setup.py,那真是极好的,18.18我没有亲自配过也不能乱说,这里给大家分享我配置18.17的过程吧:

1.首先必须安装libboost,不然是不能使用.so库的

sudo apt-get install libboost-python-dev cmake1

2.到Dlib的官网上下载dlib,会下载下来一个压缩包,里面有C++版的dlib库以及例子文档,Python dlib库的代码例子等等

我使用的版本是dlib-18.17,大家也可以在我这里下载:

之后进入python_examples下使用bat文件进行编译,编译需要先安装libboost-python-dev和cmake

cd to dlib-18.17/python_examples

./compile_dlib_python_module.bat 123

之后会得到一个dlib.so,复制到dist-packages目录下即可使用

这里大家也可以直接用我编译好的.so库,但是也必须安装libboost才可以,不然python是不能调用so库的,下载地址:

将.so复制到dist-packages目录下

sudo cp dlib.so /usr/local/lib/python2.7/dist-packages/1

最新的dlib18.18好像就没有这个bat文件了,取而代之的是一个setup文件,那么安装起来应该就没有这么麻烦了,大家可以去直接安装18.18,也可以直接下载复制我的.so库,这两种方法应该都不麻烦~

有时候还会需要下面这两个库,建议大家一并安装一下

9.安装skimage

sudo apt-get install python-skimage1

10.安装imtools

sudo easy_install imtools1

Dlib face landmarks Demo

环境配置结束之后,我们首先看一下dlib提供的示例程序

1.人脸检测

dlib-18.17/python_examples/face_detector.py 源程序:

#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt##   This example program shows how to find frontal human faces in an image.  In#   particular, it shows how you can take a list of images from the command#   line and display each on the screen with red boxes overlaid on each human#   face.##   The examples/faces folder contains some jpg images of people.  You can run#   this program on them and see the detections by executing the#   following command:#       ./face_detector.py ../examples/faces/*.jpg##   This face detector is made using the now classic Histogram of Oriented#   Gradients (HOG) feature combined with a linear classifier, an image#   pyramid, and sliding window detection scheme.  This type of object detector#   is fairly general and capable of detecting many types of semi-rigid objects#   in addition to human faces.  Therefore, if you are interested in making#   your own object detectors then read the train_object_detector.py example#   program.  ### COMPILING THE DLIB PYTHON INTERFACE#   Dlib comes with a compiled python interface for python 2.7 on MS Windows. If#   you are using another python version or operating system then you need to#   compile the dlib python interface before you can use this file.  To do this,#   run compile_dlib_python_module.bat.  This should work on any operating#   system so long as you have CMake and boost-python installed.#   On Ubuntu, this can be done easily by running the command:#       sudo apt-get install libboost-python-dev cmake##   Also note that this example requires scikit-image which can be installed#   via the command:#       pip install -U scikit-image#   Or downloaded from . import sys

import dlib

from skimage import io

detector = dlib.get_frontal_face_detector()

win = dlib.image_window()

print("a");for f in sys.argv[1:]:

print("a");

print("Processing file: {}".format(f))

img = io.imread(f)

# The 1 in the second argument indicates that we should upsample the image

# 1 time.  This will make everything bigger and allow us to detect more

# faces.

dets = detector(img, 1)

print("Number of faces detected: {}".format(len(dets)))    for i, d in enumerate(dets):

print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(

i, d.left(), d.top(), d.right(), d.bottom()))

win.clear_overlay()

win.set_image(img)

win.add_overlay(dets)

dlib.hit_enter_to_continue()# Finally, if you really want to you can ask the detector to tell you the score# for each detection.  The score is bigger for more confident detections.# Also, the idx tells you which of the face sub-detectors matched.  This can be# used to broadly identify faces in different orientations.if (len(sys.argv[1:]) 0):

img = io.imread(sys.argv[1])

dets, scores, idx = detector.run(img, 1)    for i, d in enumerate(dets):

print("Detection {}, score: {}, face_type:{}".format(

d, scores[i], idx[i]))123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081

我把源代码精简了一下,加了一下注释: face_detector0.1.py

# -*- coding: utf-8 -*-import sys

import dlib

from skimage import io#使用dlib自带的frontal_face_detector作为我们的特征提取器detector = dlib.get_frontal_face_detector()#使用dlib提供的图片窗口win = dlib.image_window()#sys.argv[]是用来获取命令行参数的,sys.argv[0]表示代码本身文件路径,所以参数从1开始向后依次获取图片路径for f in sys.argv[1:]:    #输出目前处理的图片地址

print("Processing file: {}".format(f))    #使用skimage的io读取图片

img = io.imread(f)    #使用detector进行人脸检测 dets为返回的结果

dets = detector(img, 1)    #dets的元素个数即为脸的个数

print("Number of faces detected: {}".format(len(dets)))    #使用enumerate 函数遍历序列中的元素以及它们的下标

#下标i即为人脸序号

#left:人脸左边距离图片左边界的距离 ;right:人脸右边距离图片左边界的距离

#top:人脸上边距离图片上边界的距离 ;bottom:人脸下边距离图片上边界的距离

for i, d in enumerate(dets):

print("dets{}".format(d))

print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}"

.format( i, d.left(), d.top(), d.right(), d.bottom()))    #也可以获取比较全面的信息,如获取人脸与detector的匹配程度

dets, scores, idx = detector.run(img, 1)

for i, d in enumerate(dets):

print("Detection {}, dets{},score: {}, face_type:{}".format( i, d, scores[i], idx[i]))    

#绘制图片(dlib的ui库可以直接绘制dets)

win.set_image(img)

win.add_overlay(dets)    #等待点击

dlib.hit_enter_to_continue()1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950

分别测试了一个人脸的和多个人脸的,以下是运行结果:

运行的时候把图片文件路径加到后面就好了

python face_detector0.1.py ./data/3.jpg12

一张脸的:

两张脸的:

这里可以看出侧脸与detector的匹配度要比正脸小的很多

2.人脸关键点提取

人脸检测我们使用了dlib自带的人脸检测器(detector),关键点提取需要一个特征提取器(predictor),为了构建特征提取器,预训练模型必不可少。

除了自行进行训练外,还可以使用官方提供的一个模型。该模型可从dlib sourceforge库下载:

arks.dat.bz2

也可以从我的连接下载:

这个库支持68个关键点的提取,一般来说也够用了,如果需要更多的特征点就要自己去训练了。

dlib-18.17/python_examples/face_landmark_detection.py 源程序:

#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt##   This example program shows how to find frontal human faces in an image and#   estimate their pose.  The pose takes the form of 68 landmarks.  These are#   points on the face such as the corners of the mouth, along the eyebrows, on#   the eyes, and so forth.##   This face detector is made using the classic Histogram of Oriented#   Gradients (HOG) feature combined with a linear


网页标题:pythonhog函数 python 函数
网站链接:http://chengdu.cdxwcx.cn/article/dopojcj.html