成都网站建设设计

将想法与焦点和您一起共享

java代码求公倍数 代码求最小公倍数

求JAVA最小公倍数的代码

package one;

创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:网站设计制作、成都网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的丰泽网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

import java.util.*;public class ProOne {

//题目:输入两个正整数m和n,求其最大公约数和最小公倍数。

//程序分析:利用辗除法。

public static void main(String[] args)

{

int m=0,n=0,m1=0,n1=0;

int a;

Scanner scanner = new Scanner(System.in);

System.out.println("请输入m的值:");

m=scanner.nextInt();

System.out.println("请输入n的值:");

n=scanner.nextInt();

//将输入的m和n值备份;

m1=m;

n1=n;

//取得两个数相除的余数;

a=m%n;

while(a!=0)

{

m1=n1;n1=a;a=m1%n1;

}

System.out.println("m,n的最大公约数为:"+n1);

//求两个数字的最小公倍数的方法为:(两个数的乘积)/(两个数字的最大公约数);

System.out.println("m,n两个数的最小公倍数为:"+m*n/n1);

}

}//我以前做的,你看看吧!

JAVA如何编写程序求两个数的最大公约数和最小公倍数?

[java] view plaincopy\x0d\x0aimport java.util.*; \x0d\x0a \x0d\x0a/*求最大公约数和最小公倍数*/ \x0d\x0apublic class MaxCommonDivisorAndMinCommonMultiple { \x0d\x0a \x0d\x0a public static void main(String[] args) { \x0d\x0a Scanner scan = new Scanner(System.in);// 接收控制台输入的信息 \x0d\x0a \x0d\x0a System.out.print("请输入第一个整数:"); \x0d\x0a int num1 = scan.nextInt(); // 取出控制台输入的信息 \x0d\x0a \x0d\x0a System.out.print("请输入第二个整数:"); \x0d\x0a int num2 = scan.nextInt(); // 取出控制台输入的信息 \x0d\x0a \x0d\x0a System.out.println(maxCommonDivisor(num1, num2));// 调用maxCommonDivisor()方法 \x0d\x0a System.out.println(minCommonMultiple(num1, num2));// 调用minCommonMultiple()方法 \x0d\x0a } \x0d\x0a \x0d\x0a // 递归法求最大公约数 \x0d\x0a public static int maxCommonDivisor(int m, int n) { \x0d\x0a if (m n,若mn,若m

回答于 2022-11-16

用Java 求两个数的最小公倍数

//求最大公约数

publicstaticintcommonDivisor(intn,intm){

//辗转相除是用大的除以小的。如果nwhile(n%m!=0){

inttemp=n%m;

n=m;

m=temp;

}

returnm;

}

//求最小公倍数

publicstaticintcommonMultiple(intn,intm){

returnn*m/commonDivisor(n,m);//两数相乘除以最大公约数

}

java编写求最大公约数和最小公倍数的程序

输入两个正整数m和n, 求其最大公约数和最小公倍数.

用辗转相除法求最大公约数

算法描述:

m对n求余为a, 若a不等于0

则 m - n, n - a, 继续求余

否则 n 为最大公约数

最小公倍数 = 两个数的积 / 最大公约数

#include

int main()

{

int m, n;

int m_cup, n_cup, res; /*被除数, 除数, 余数*/

printf("Enter two integer:\n");

scanf("%d %d", m, n);

if (m 0 n 0)

{

m_cup = m;

n_cup = n;

res = m_cup % n_cup;

while (res != 0)

{

m_cup = n_cup;

n_cup = res;

res = m_cup % n_cup;

}

printf("Greatest common divisor: %d\n", n_cup);

printf("Lease common multiple : %d\n", m * n / n_cup);

}

else printf("Error!\n");

return 0;

}

★ 关于辗转相除法, 搜了一下, 在我国古代的《九章算术》中就有记载,现摘录如下:

约分术曰:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”

其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法,实际上就是辗转相除法。

辗转相除法求最大公约数,是一种比较好的方法,比较快。

对于52317和75569两个数,你能迅速地求出它们的最大公约数吗?一般来说你会找一找公共的使因子,这题可麻烦了,不好找,质因子大。

现在教你用辗转相除法来求最大公约数。

先用较大的75569除以52317,得商1,余数23252,再以52317除以23252,得商2,余数是5813,再用23252做被除数,5813做除数,正好除尽得商数4。这样5813就是75569和52317的最大公约数。你要是用分解使因数的办法,肯定找不到。

那么,这辗转相除法为什么能得到最大公约数呢?下面我就给大伙谈谈。

比如说有要求a、b两个整数的最大公约数,a>b,那么我们先用a除以b,得到商8,余数r1:a÷b=q1…r1我们当然也可以把上面这个式子改写成乘法式:a=bq1+r1------l)

如果r1=0,那么b就是a、b的最大公约数3。要是r1≠0,就继续除,用b除以r1,我们也可以有和上面一样的式子:

b=r1q2+r2-------2)

如果余数r2=0,那么r1就是所求的最大公约数3。为什么呢?因为如果2)式变成了b=r1q2,那么b1r1的公约数就一定是a1b的公约数。这是因为一个数能同时除尽b和r1,那么由l)式,就一定能整除a,从而也是a1b的公约数。

反过来,如果一个数d,能同时整除a1b,那么由1)式,也一定能整除r1,从而也有d是b1r1的公约数。

这样,a和b的公约数与b和r1的公约数完全一样,那么这两对的最大公约数也一定相同。那b1r1的最大公约数,在r1=0时,不就是r1吗?所以a和b的最大公约数也是r1了。

有人会说,那r2不等于0怎么办?那当然是继续往下做,用r1除以r2,……直到余数为零为止。

在这种方法里,先做除数的,后一步就成了被除数,这就是辗转相除法名字的来历吧。

java程序编写 编写程序,接受用户输入的两个整数,求两数的最小公倍数并输出

import java.util.Scanner;

public class Gongbei {

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

System.out.println("输入第一个数:");

int x = sc.nextInt();

System.out.println("输入第二个数:");

int y = sc.nextInt();

System.out.println("最小公倍数:"+gongbei(x,y));

}

public static int gongyue(int x,int y){//最大公约数

if(xy){

int t = x;

x = y;

y = t;

}

while(x!=0){

int temp = y%x;

y = x;

x = temp;

}

return y;

}

public static int gongbei(int x,int y){//最小公倍数

int a = x,b = y;

int g = gongyue(a,b);

return x*y/g;

}

}


文章题目:java代码求公倍数 代码求最小公倍数
URL分享:http://chengdu.cdxwcx.cn/article/doopdgo.html