首先我们先来了解一下计算平均数的IPO模式.
成都创新互联专注于兴宾网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供兴宾营销型网站建设,兴宾网站制作、兴宾网页设计、兴宾网站官网定制、微信小程序服务,打造兴宾网络公司原创品牌,更为您提供兴宾网站排名全网营销落地服务。
输入:待输入计算平均数的数。
处理:平均数算法
输出:平均数
明白了程序的IPO模式之后,我们打开本地的python的IDE
工具,并新建一个python文件,命名为test6.py.
请点击输入图片描述
请点击输入图片描述
请点击输入图片描述
打开test6.py,进行编码,第一步,提示用户输入要计算多少个数的平均数。
请点击输入图片描述
第二步,初始化sum总和的值。注意,这是编码的好习惯,在定义一个变量的时候,给一个初始值。
请点击输入图片描述
第三步,循环输入要计算平均数的数,并计算总和sum的值。
请点击输入图片描述
最后,计算出平均数,并输出,利用“总和/数量”的公式计算出平均数。
请点击输入图片描述
编码完成后,记得保存,然后进行调试运行。按F5键或者点击菜单栏中的“run”-》“run model”来运行程序。
请点击输入图片描述
请点击输入图片描述
方法一:
scores = [91, 95, 97, 99, 92, 93, 96, 98]
scores2 = []
avg = sum(scores) / len(scores)
print('平均成绩是:{}'.format(avg))
for i in scores:
if i avg# 少于平均分的成绩放到新建的空列表中
scores2.append(i)
print('低于平均成绩的有:{}'.format(scores2))
方法二:
导入函数库
import numpy as np # 导入 numpy库,as 即为导入的库起一个别称,别称为np
scores1 = [91, 95, 97, 99, 92, 93, 96, 98]
scores2 = []
average = np.mean(scores1) # 一行解决。
print('平均成绩是:{}'.format(average))
# 下面展示一种NumPy数组的操作,感兴趣的同学可以自行去学习哈。
scores3 = np.array(scores1)
print('低于平均成绩的有:{}'.format(scores3[scores3
# coding = GBK
a =[1,2,3,4,5]
sum=0
b = len(a)
print("这个数组的长度为:",b)
for i in a:
sum =sum +i
print("这个数组之和为:",sum)
print("这个数组平均数为",sum/b)
或
import sys
sum = 0
cnt = 0
f = open('1.txt', 'r')
files = f.readline()
while (files ):
sum = sum + float(files .split(",")[0])
cnt = cnt + 1
files = f.readline()
print(sum / cnt)
f.close()
或者。
#!/usr/bin/env pythonimport timeimport numpy as np
dd = np.random.randint(0, 20, size=(2*1000*1000))t_start = time.clock()avg_sum1 =
0.0BlockOffset = 0 while BlockOffset len(dd):
if dd[BlockOffset + 1] = 10:
avg_sum1 += dd[BlockOffset + 1] * 0.1
else:
avg_sum1 += dd[BlockOffset + 0] * 0.01
BlockOffset += 2print('Avg: ' + str(avg_sum1 / len(dd) / 2)) print('Exe time: ' +
str(time.clock() - t_start))
扩展资料:
python 实现求和、计数、最大最小值、平均值、中位数、标准偏差、百分比。
import sys
class Stats:
def __init__(self, sequence):
# sequence of numbers we will process
# convert all items to floats for numerical processing
self.sequence = [float(item) for item in sequence]
def sum(self):
if len(self.sequence) 1:
return None
else:
return sum(self.sequence)
def count(self):
return len(self.sequence)
def min(self):
if len(self.sequence) 1:
return None
else:
return min(self.sequence)
def max(self):
if len(self.sequence) 1:
return None
else:
return max(self.sequence)
def avg(self):
if len(self.sequence) 1:
return None
else:
return sum(self.sequence) / len(self.sequence)
def median(self):
if len(self.sequence) 1:
return None
else:
self.sequence.sort()
return self.sequence[len(self.sequence) // 2]
def stdev(self):
if len(self.sequence) 1:
return None
else:
avg = self.avg()
sdsq = sum([(i - avg) ** 2 for i in self.sequence])
stdev = (sdsq / (len(self.sequence) - 1)) ** .5
return stdev
def percentile(self, percentile):
if len(self.sequence) 1:
value = None
elif (percentile = 100):
sys.stderr.write('ERROR: percentile must be 100. you supplied: %s\n'% percentile)
value = None
else:
element_idx = int(len(self.sequence) * (percentile / 100.0))
self.sequence.sort()
value = self.sequence[element_idx]
return value
参考资料来源:百度百科-python