成都网站建设设计

将想法与焦点和您一起共享

go语言对齐技巧 对称go怎么玩

golang 结构体 字节对齐是怎么样的

用golang解析二进制协议时,其实没必要管结构体的字段的对齐规则,何况语言规范也没有规定如何对齐,也就是没有规则。用encoding/binary.Read函数直接读入struct里就行,struct就像c那样写

公司主营业务:成都网站制作、成都网站设计、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联公司推出秦淮免费做网站回馈大家。

type Data struct {

Size, MsgType uint16

Sequence uint32

// ...

}

golang编译器加不加padding,Read都能正常工作,runtime知道Data的布局的,不像C直接做cast所以要知道怎样对齐。

用unsafe.Alignof可以知道每个field的对齐长度,但没必要用到。

package main

/*

#include stdint.h

#pragma pack(push, 1)

typedef struct {

uint16_t size;

uint16_t msgtype;

uint32_t sequnce;

uint8_t data1;

uint32_t data2;

uint16_t data3;

} mydata;

#pragma pack(pop)

mydata foo = {

1, 2, 3, 4, 5, 6,

};

int size() {

return sizeof(mydata);

}

*/

import "C"

import (

"bytes"

"encoding/binary"

"fmt"

"log"

"unsafe"

)

func main() {

bs := C.GoBytes(unsafe.Pointer(C.foo), C.size())

fmt.Printf("len %d data %v\n", len(bs), bs)

var data struct {

Size, Msytype uint16

Sequence uint32

Data1 uint8

Data2 uint32

Data3 uint16

}

err := binary.Read(bytes.NewReader(bs), binary.LittleEndian, data)

if err != nil {

log.Fatal(err)

}

fmt.Printf("%v\n", data) // {1 2 3 4 5 6}

buf := new(bytes.Buffer)

binary.Write(buf, binary.BigEndian, data)

fmt.Printf("%d %v\n", buf.Len(), buf.Bytes()) // 15 [0 1 0 2 0 0 0 3 4 0 0 0 5 0 6]

}

golang内存对齐

`

`

计算机结构中可能会要求内存地址进行对齐;也就是说,一个变量的地址是一个因子的倍数。例如

`

`

在golang上,开发者有义务使64位字长的数据原子访问是64位(8字节)对齐的。 在 全局变量,结构体和切片的第一个字长数据可以被认为是64位对齐,如果是嵌套的结构体8字节对齐,那么被嵌套的结构要是8字节对齐,并且放在结构体中的第一个

如果保证呢:

变量或开辟的结构体、数组和切片值中的第一个64位字可以被认为是8字节对齐的。

开辟的意思就是好通过声明,make,new方式创建的。就是说这样创建的64为字可以保证是64为对齐的

Go语言中恰到好处的内存对齐

在开始之前,希望你计算一下 Part1 共占用的大小是多少呢?

输出结果:

这么一算, Part1 这一个结构体的占用内存大小为 1+4+1+8+1 = 15 个字节。相信有的小伙伴是这么算的,看上去也没什么毛病

真实情况是怎么样的呢?我们实际调用看看,如下:

输出结果:

最终输出为占用 32 个字节。这与前面所预期的结果完全不一样。这充分地说明了先前的计算方式是错误的。为什么呢?

在这里要提到 “内存对齐” 这一概念,才能够用正确的姿势去计算,接下来我们详细的讲讲它是什么

有的小伙伴可能会认为内存读取,就是一个简单的字节数组摆放

上图表示一个坑一个萝卜的内存读取方式。但实际上 CPU 并不会以一个一个字节去读取和写入内存。相反 CPU 读取内存是 一块一块读取 的,块的大小可以为 2、4、6、8、16 字节等大小。块大小我们称其为 内存访问粒度 。如下图:

在样例中,假设访问粒度为 4。 CPU 是以每 4 个字节大小的访问粒度去读取和写入内存的。这才是正确的姿势

另外作为一个工程师,你也很有必要学习这块知识点哦 :)

在上图中,假设从 Index 1 开始读取,将会出现很崩溃的问题。因为它的内存访问边界是不对齐的。因此 CPU 会做一些额外的处理工作。如下:

从上述流程可得出,不做 “内存对齐” 是一件有点 "麻烦" 的事。因为它会增加许多耗费时间的动作

而假设做了内存对齐,从 Index 0 开始读取 4 个字节,只需要读取一次,也不需要额外的运算。这显然高效很多,是标准的 空间换时间 做法

在不同平台上的编译器都有自己默认的 “对齐系数”,可通过预编译命令 #pragma pack(n) 进行变更,n 就是代指 “对齐系数”。一般来讲,我们常用的平台的系数如下:

另外要注意,不同硬件平台占用的大小和对齐值都可能是不一样的。因此本文的值不是唯一的,调试的时候需按本机的实际情况考虑

输出结果:

在 Go 中可以调用 unsafe.Alignof 来返回相应类型的对齐系数。通过观察输出结果,可得知基本都是 2^n ,最大也不会超过 8。这是因为我手提(64 位)编译器默认对齐系数是 8,因此最大值不会超过这个数

在上小节中,提到了结构体中的成员变量要做字节对齐。那么想当然身为最终结果的结构体,也是需要做字节对齐的

接下来我们一起分析一下,“它” 到底经历了些什么,影响了 “预期” 结果

在每个成员变量进行对齐后,根据规则 2,整个结构体本身也要进行字节对齐,因为可发现它可能并不是 2^n ,不是偶数倍。显然不符合对齐的规则

根据规则 2,可得出对齐值为 8。现在的偏移量为 25,不是 8 的整倍数。因此确定偏移量为 32。对结构体进行对齐

Part1 内存布局:axxx|bbbb|cxxx|xxxx|dddd|dddd|exxx|xxxx

通过本节的分析,可得知先前的 “推算” 为什么错误?

是因为实际内存管理并非 “一个萝卜一个坑” 的思想。而是一块一块。通过空间换时间(效率)的思想来完成这块读取、写入。另外也需要兼顾不同平台的内存操作情况

在上一小节,可得知根据成员变量的类型不同,其结构体的内存会产生对齐等动作。那假设字段顺序不同,会不会有什么变化呢?我们一起来试试吧 :-)

输出结果:

通过结果可以惊喜的发现,只是 “简单” 对成员变量的字段顺序进行改变,就改变了结构体占用大小

接下来我们一起剖析一下 Part2 ,看看它的内部到底和上一位之间有什么区别,才导致了这样的结果?

符合规则 2,不需要额外对齐

Part2 内存布局:ecax|bbbb|dddd|dddd

通过对比 Part1 和 Part2 的内存布局,你会发现两者有很大的不同。如下:

仔细一看, Part1 存在许多 Padding。显然它占据了不少空间,那么 Padding 是怎么出现的呢?

通过本文的介绍,可得知是由于不同类型导致需要进行字节对齐,以此保证内存的访问边界

那么也不难理解,为什么 调整结构体内成员变量的字段顺序 就能达到缩小结构体占用大小的疑问了,是因为巧妙地减少了 Padding 的存在。让它们更 “紧凑” 了。这一点对于加深 Go 的内存布局印象和大对象的优化非常有帮


文章题目:go语言对齐技巧 对称go怎么玩
链接地址:http://chengdu.cdxwcx.cn/article/dodhhhe.html