设R为F(x)=0的根,选择x0作为R的初始近似值,并使曲线y=F(x)的切线l穿过点(x0,F(x0))。L的方程为y=f(x0)f“(x0)(x-x0),求L轴与x轴交点的横坐标X1=x0-f(x0)/f”(x0),称为R的一次近似。通过点(X1,f(X1)),使曲线的切线y=f(x),求切线与x轴交点的横坐标x2=X1-f(X1)/f“(X1)X轴,称为R的二次近似,重复上述过程,得到R的近似值序列,其中X(n1)=X(n)-f(X(n))/f“(X(n)),称为n1次R的近似值,上述公式称为牛顿迭代公式。
创新互联专注于企业成都营销网站建设、网站重做改版、云县网站定制设计、自适应品牌网站建设、HTML5、商城开发、集团公司官网建设、外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为云县等各大城市提供网站开发制作服务。根据牛顿迭代原理,我们可以得到如下迭代公式:X(n1)=[X(n)P/xn]/2