成都网站建设设计

将想法与焦点和您一起共享

python中的提取函数 Python批量提取PDF中的信息

python提取excel表中的数据两列

1、首先打开excel表格,在单元格中输入两列数据,需要将这两列数据进行比对相同数据。

创新互联公司-专业网站定制、快速模板网站建设、高性价比上犹网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式上犹网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖上犹地区。费用合理售后完善,10多年实体公司更值得信赖。

2、然后在C1单元格中输入公式:=VLOOKUP(B1,A:A,1,0),意思是比对B1单元格中A列中是否有相同数据。

3、点击回车,即可将公式的计算结果显示出来,可以看到C1中显示的是B1在A列中找到的相同数据。

4、将公式向下填充,即可发现C列中显示出的数字即为有相同数据的,显示“#N/A”的为没有找到匹配数据的。

5、将C1-C4中的数据进行复制并粘贴成数值,即可完成相同数据的提取操作。

在实际研究中,我们经常需要获取大量数据,而这些数据很大一部分以pdf表格的形式呈现,如公司年报、发行上市公告等。面对如此多的数据表格,采用手工复制黏贴的方式显然并不可取。那么如何才能高效提取出pdf文件中的表格数据呢?

Python提供了许多可用于pdf表格识别的库,如camelot、tabula、pdfplumber等。综合来看,pdfplumber库的性能较佳,能提取出完整、且相对规范的表格。因此,本推文也主要介绍pdfplumber库在pdf表格提取中的作用。

作为一个强大的pdf文件解析工具,pdfplumber库可迅速将pdf文档转换为易于处理的txt文档,并输出pdf文档的字符、页面、页码等信息,还可进行页面可视化操作。使用pdfplumber库前需先安装,即在cmd命令行中输入:

pip install pdfplumber

pdfplumber库提供了两种pdf表格提取函数,分别为.extract_tables( )及.extract_table( ),两种函数提取结果存在差异。为进行演示,我们网站上下载了一份短期融资券主体信用评级报告,为pdf格式。任意选取某一表格,其界面如下:

接下来,我们简要分析两种提取模式下的结果差异。

(1).extract_tables( )

可输出页面中所有表格,并返回一个嵌套列表,其结构层次为table→row→cell。此时,页面上的整个表格被放入一个大列表中,原表格中的各行组成该大列表中的各个子列表。若需输出单个外层列表元素,得到的便是由原表格同一行元素构成的列表。例如,我们执行如下程序:

输出结果:

(2).extract_table( )

返回多个独立列表,其结构层次为row→cell。若页面中存在多个行数相同的表格,则默认输出顶部表格;否则,仅输出行数最多的一个表格。此时,表格的每一行都作为一个单独的列表,列表中每个元素即为原表格的各个单元格内容。若需输出某个元素,得到的便是具体的数值或字符串。如下:

输出结果:

在此基础上,我们详细介绍如何从pdf文件中提取表格数据。其中一种思路便是将提取出的列表视为一个字符串,结合Python的正则表达式re模块进行字符串处理后,将其保存为以标准英文逗号分隔、可被Excel识别的csv格式文件,即进行如下操作:

输出结果:

尽管能获得完整的表格数据,但这种方法相对不易理解,且在处理结构不规则的表格时容易出错。由于通过pdfplumber库提取出的表格数据为整齐的列表结构,且含有数字、字符串等数据类型。因此,我们可调用pandas库下的DataFrame( )函数,将列表转换为可直接输出至Excel的DataFrame数据结构。DataFrame的基本构造函数如下:

DataFrame([data,index, columns])

三个参数data、index和columns分别代表创建对象、行索引和列索引。DataFrame类型可由二维ndarray对象、列表、字典、元组等创建。本推文中的data即指整个pdf表格,提取程序如下:

其中,table[1:]表示选定整个表格进行DataFrame对象创建,columns=table[0]表示将表格第一行元素作为列变量名,且不创建行索引。输出Excel表格如下:

通过以上简单程序,我们便提取出了完整的pdf表格。但需注意的是,面对不规则的表格数据提取,创建DataFrame对象的方法依然可能出错,在实际操作中还需进行核对。

关于我们

微信公众号“爬虫俱乐部”分享实用的stata命令,欢迎转载、打赏。爬虫俱乐部是由李春涛教授领导下的研究生及本科生组成的大数据分析和数据挖掘团队。

投稿要求:

1)必须原创,禁止抄袭;

2)必须准确,详细,有例子,有截图;

python如何提取.c文件中的指定函数的输入参数

class stdata(Structure):

_fields_ = [('pBuf', c_char_p), ('buflen', c_int)]

N=100

buf = create_string_buffer(N)

d = stdata()

d.buflen = N

d.pBuf = cast(buf, c_char_p)

n = CallMyCFunc_GetData(byref(d))

关键在于create_string_buffer创建可写buffer;cast转换为char*类型。

利用python中的方法和函数提取给定列表[5,-7,2,-3,0]中的最大元素并删除最小元素同时将负数的负号去除

list1=['5','8','-7','4','6','2','-3','0']

max(list1)

min(list1)

abs(-7)

python中如何从字符串中提取数字?

1、如下图,要提取#后面的字符,也即红色的“SDK”到B列。

2、首先,在B2中输入公式:

=FIND("#",A2)

返回#在字符串中的位置,#在A2单元格文本中是第6个字符。

3、知识点说明:

FIND()函数查找第一参数在第二参数中的位置。如下图,查找“B”在“ABCD”中是第几个字符。第一参数是要查找的字符“B”,第二参数是被查找的字符串。最终返回“B”在“ABCD”中是第2个字符。

4、然后,在B2中输入公式:

=MID(A2,FIND("#",A2)+1,99)

这样,就提取出了#后的字符。

5、知识点说明:

MID()函数返回从字符串中制定字符开始若干个字符的字符串。如下图,MID()函数返回“ABCDE”字符串中从第2个字符开始的连续3个字符,也就是返回“BCD”。

6、综上,=MID(A2,FIND("#",A2)+1,99)的意思就是从A2单元格#字符后面的一个字符起,取长度为99的字符串。其中的99是一个较大的数字,能涵盖#后字符的最大长度即可。

python怎么把一堆周期信号里面提取去一个周期的信号

你可以使用Python的scipy.signal模块中的find_peaks()函数来把一堆周期信号里面提取出一个周期的信号。该函数将在输入信号中寻找极大值,这些极大值将构成一个完整的周期。


网站标题:python中的提取函数 Python批量提取PDF中的信息
URL分享:http://chengdu.cdxwcx.cn/article/docsdeh.html