成都网站建设设计

将想法与焦点和您一起共享

使用NumPy和pandas怎么对CSV文件进行操作-创新互联

使用NumPy和pandas怎么对CSV文件进行操作,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

成都网站设计、成都网站建设服务团队是一支充满着热情的团队,执着、敏锐、追求更好,是创新互联的标准与要求,同时竭诚为客户提供服务是我们的理念。创新互联建站把每个网站当做一个产品来开发,精雕细琢,追求一名工匠心中的细致,我们更用心!

数组存储成CSV之类的区隔型文件:

将一个数组元素的值设为NaN:

 In [26]: import numpy as np
 In [27]: np.random.seed(42)
 In [28]: a = np.random.randn(3,4)
 In [29]: a[2][2] = np.nan
 In [30]: print(a)
 [[ 0.49671415 -0.1382643  0.64768854 1.52302986]
 [-0.23415337 -0.23413696 1.57921282 0.76743473]
 [-0.46947439 0.54256004     nan -0.46572975]]

NumPy的savetxt()函数是与loadtxt()相对应的一个函数,它能以诸如CSV之类的区隔型文件格式保存数组:

In [31]: np.savetxt('np.csv',a,fmt='%.2f',delimiter=',',header="#1,#2,#3,#4")

上面的函数调用中,我们规定了用以保存数组的文件的名称、数组、可选格式、间隔符和一个可选的标题

通过cat np.csv,可以查看刚才所建的np.csv文件的具体内容

利用随机数组来创建pandas DataFrame:

 In [38]: df = pd.DataFrame(a)
 In [39]: df
 Out[39]: 
  0     1     2     3
 0 0.496714 -0.138264 0.647689 1.523030
 1 -0.234153 -0.234137 1.579213 0.767435
 2 -0.469474 0.542560    NaN -0.465730

pandas会自动替我们给数据取好列名

利用pandas的to_csv()方法可以为CSV文件生成一个DataFrame:

In [40]: df.to_csv('pd.csv',float_format='%.2f',na_rep="NAN!")

对于这个方法,我们需要提供文件名、类似于NumPy的savetxt()函数的格式化参数的可选格式串和一个表示NaN的可选字符串

关于使用NumPy和pandas怎么对CSV文件进行操作问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联成都网站设计公司行业资讯频道了解更多相关知识。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


标题名称:使用NumPy和pandas怎么对CSV文件进行操作-创新互联
当前链接:http://chengdu.cdxwcx.cn/article/djcepd.html