成都网站建设设计

将想法与焦点和您一起共享

如何在python中将读取的文件转换为矩阵-创新互联

这篇文章主要介绍了如何在python中将读取的文件转换为矩阵,创新互联小编觉得不错,现在分享给大家,也给大家做个参考,一起跟随创新互联小编来看看吧!

专注于为中小企业提供成都做网站、成都网站设计服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业盘山免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了1000多家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。python可以做什么

Python是一种编程语言,内置了许多有效的工具,Python几乎无所不能,该语言通俗易懂、容易入门、功能强大,在许多领域中都有广泛的应用,例如最热门的大数据分析,人工智能,Web开发等。

代码流程:

1. 从文件中读入数据。

2. 将数据转化成矩阵的形式。

3. 对于矩阵进行处理。

具体的python代码如下:

- 文件路径需要设置正确。

- 字符串处理。

- 字符串数组到 整型数组的转化。( nums = [int(x) for x in nums ])

- 矩阵的构造。(matrix = np.array(nums))

- numpy模块在矩阵处理上很有优势。

列表内容

# -*- coding: utf-8 -*-
import numpy as np
def readFile(path):
 # 打开文件(注意路径)
 f = open(path)
 # 逐行进行处理
 first_ele = True
 for data in f.readlines():
  ## 去掉每行的换行符,"\n"
  data = data.strip('\n')
  ## 按照 空格进行分割。
  nums = data.split(" ")
  ## 添加到 matrix 中。
  if first_ele:
   ### 将字符串转化为整型数据
   nums = [int(x) for x in nums ]
   ### 加入到 matrix 中 。
   matrix = np.array(nums)
   first_ele = False
  else:
   nums = [int(x) for x in nums]
   matrix = np.c_[matrix,nums]
 dealMatrix(matrix)
 f.close()
def dealMatrix(matrix):
 ## 一些基本的处理。
 print "transpose the matrix"
 matrix = matrix.transpose()
 print matrix
 print "matrix trace "
 print np.trace(matrix)
# test.
if __name__ == '__main__':
 readFile("matrix")

其中matrix文件中的内容如下:

0 0 0 1
1 0 1 0
1 0 1 1
1 1 1 1
1
2
3
4

python 构造m* n的矩阵

- 通过列表的方式(数组)进行生成矩阵。

- 该矩阵不适用于稀疏矩阵。(稀疏矩阵不会这样子进行构造)

- 注意:如果数据量特别大的时候,这种方法相当于将矩阵中的东西全部加载到内存中,如果行列达到10000+,最好考虑使用稀疏矩阵。(易出现 MemoryError)

- 稀疏矩阵的运算也应该考虑。

相关代码:

def fixed_matrix(row,col):
 return [[0 for i in range(col)] for j in range(row)]

以上就是创新互联小编为大家收集整理的如何在python中将读取的文件转换为矩阵,如何觉得创新互联网站的内容还不错,欢迎将创新互联网站推荐给身边好友。


本文名称:如何在python中将读取的文件转换为矩阵-创新互联
文章出自:http://chengdu.cdxwcx.cn/article/dihjdg.html