成都网站建设设计

将想法与焦点和您一起共享

深入解析神经网络从原理到实现-创新互联

1.简单介绍

成都创新互联公司专业为企业提供永济网站建设、永济做网站、永济网站设计、永济网站制作等企业网站建设、网页设计与制作、永济企业网站模板建站服务,10余年永济做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

在机器学习和认知科学领域,人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN)或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分:

结构 (Architecture) 结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。

激励函数(Activity Rule) 大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。

学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。

2.初识神经网络

如上文所说,神经网络主要包括三个部分:结构、激励函数、学习规则。图1是一个三层的神经网络,输入层有d个节点,隐层有q个节点,输出层有l个节点。除了输入层,每一层的节点都包含一个非线性变换。

深入解析神经网络从原理到实现

图1

那么为什么要进行非线性变换呢?

(1)如果只进行线性变换,那么即使是多层的神经网络,依然只有一层的效果。类似于0.6*(0.2x1+0.3x2)=0.12x1+0.18x2。
(2)进行非线性变化,可以使得神经网络可以拟合任意一个函数,图2是一个四层网络的图。

深入解析神经网络从原理到实现

图2

下面使用数学公式描述每一个神经元工作的方式

(1)输出x
(2)计算z=w*x
(3)输出new_x = f(z),这里的f是一个函数,可以是sigmoid、tanh、relu等,f就是上文所说到的激励函数。

3.反向传播(bp)算法

有了上面的网络结构和激励函数之后,这个网络是如何学习参数(学习规则)的呢?

首先我们先定义下本文使用的激活函数、目标函数

(1)激活函数(sigmoid):深入解析神经网络从原理到实现

def sigmoid(z):
  return 1.0/(1.0+np.exp(-z))

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前文章:深入解析神经网络从原理到实现-创新互联
文章URL:http://chengdu.cdxwcx.cn/article/deddoj.html