成都网站建设设计

将想法与焦点和您一起共享

在pytorch中实现只让指定变量向后传播梯度-创新互联

pytorch中如何只让指定变量向后传播梯度?

创新互联长期为上千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为响水企业提供专业的成都做网站、网站建设,响水网站改版等技术服务。拥有10多年丰富建站经验和众多成功案例,为您定制开发。

(或者说如何让指定变量不参与后向传播?)

有以下公式,假如要让L对xvar求导:

在pytorch中实现只让指定变量向后传播梯度

(1)中,L对xvar的求导将同时计算out1部分和out2部分;

(2)中,L对xvar的求导只计算out2部分,因为out1的requires_grad=False;

(3)中,L对xvar的求导只计算out1部分,因为out2的requires_grad=False;

验证如下:


#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Wed May 23 10:02:04 2018
@author: hy
"""
 
import torch
from torch.autograd import Variable
print("Pytorch version: {}".format(torch.__version__))
x=torch.Tensor([1])
xvar=Variable(x,requires_grad=True)
y1=torch.Tensor([2])
y2=torch.Tensor([7])
y1var=Variable(y1)
y2var=Variable(y2)
#(1)
print("For (1)")
print("xvar requres_grad: {}".format(xvar.requires_grad))
print("y1var requres_grad: {}".format(y1var.requires_grad))
print("y2var requres_grad: {}".format(y2var.requires_grad))
out1 = xvar*y1var
print("out1 requres_grad: {}".format(out1.requires_grad))
out2 = xvar*y2var
print("out2 requres_grad: {}".format(out2.requires_grad))
L=torch.pow(out1-out2,2)
L.backward()
print("xvar.grad: {}".format(xvar.grad))
xvar.grad.data.zero_()
#(2)
print("For (2)")
print("xvar requres_grad: {}".format(xvar.requires_grad))
print("y1var requres_grad: {}".format(y1var.requires_grad))
print("y2var requres_grad: {}".format(y2var.requires_grad))
out1 = xvar*y1var
print("out1 requres_grad: {}".format(out1.requires_grad))
out2 = xvar*y2var
print("out2 requres_grad: {}".format(out2.requires_grad))
out1 = out1.detach()
print("after out1.detach(), out1 requres_grad: {}".format(out1.requires_grad))
L=torch.pow(out1-out2,2)
L.backward()
print("xvar.grad: {}".format(xvar.grad))
xvar.grad.data.zero_()
#(3)
print("For (3)")
print("xvar requres_grad: {}".format(xvar.requires_grad))
print("y1var requres_grad: {}".format(y1var.requires_grad))
print("y2var requres_grad: {}".format(y2var.requires_grad))
out1 = xvar*y1var
print("out1 requres_grad: {}".format(out1.requires_grad))
out2 = xvar*y2var
print("out2 requres_grad: {}".format(out2.requires_grad))
#out1 = out1.detach()
out2 = out2.detach()
print("after out2.detach(), out2 requres_grad: {}".format(out1.requires_grad))
L=torch.pow(out1-out2,2)
L.backward()
print("xvar.grad: {}".format(xvar.grad))
xvar.grad.data.zero_()

网站栏目:在pytorch中实现只让指定变量向后传播梯度-创新互联
文章出自:http://chengdu.cdxwcx.cn/article/cedgjs.html